WaveletFitting {WaveletArima} | R Documentation |
Wavelet Transform Using Maximal Overlap Discrete Wavelet Transform (MODWT) Algorithm
Description
Transforms the time series data by using hybrid MODWT algorithm.
Usage
WaveletFitting(
ts,
WFilter = "haar",
Wvlevels,
bndry = "periodic",
FFlag = TRUE
)
Arguments
ts |
Univariate time series |
WFilter |
Wavelet filter use in the decomposition |
Wvlevels |
The level of wavelet decomposition |
bndry |
The boundary condition of wavelet decomposition:'periodic' or 'reflection' |
FFlag |
The FastFlag condition of wavelet decomposition: True or False |
Value
WaveletSeries - The wavelet trasnform of the series
References
Aminghafari, M. and Poggi, J.M. 2007. Forecasting time series using wavelets. Internationa Journal of Wavelets, Multiresolution and Inforamtion Processing, 5, 709 to 724
Percival D. B. and Walden A. T. 2000. Wavelet Methods for Time-Series Analysis. Cambridge Univ. Press, U.K.
Paul R. K., Prajneshu and Ghosh H. 2013. Wavelet Frequency Domain Approach for Modelling and Forecasting of Indian Monsoon Rainfall Time-Series Data. Journal of the Indian society of agricultural statistics, 67, 319 to 327.
Examples
data<-rnorm(100,mean=100,sd=50)
WaveletFitting(ts=data,Wvlevels=3,WFilter='haar',bndry='periodic',FFlag=TRUE)