WaveletFittingann {WaveletANN} | R Documentation |
Wavelet-ANN Hybrid Model for Forecasting
Description
Wavelet-ANN Hybrid Model for Forecasting
Usage
WaveletFittingann(
ts,
Waveletlevels,
Filter = "haar",
boundary = "periodic",
FastFlag = TRUE,
nonseaslag,
seaslag = 1,
hidden,
NForecast
)
Arguments
ts |
Univariate time series |
Waveletlevels |
The level of wavelet decomposition |
Filter |
Wavelet filter |
boundary |
The boundary condition of wavelet decomposition |
FastFlag |
The FastFlag condition of wavelet decomposition: True or False |
nonseaslag |
Number of non seasonal lag |
seaslag |
Number of non seasonal lag |
Size of the hidden layer | |
NForecast |
The forecast horizon: A positive integer |
Value
Finalforecast - Forecasted value
FinalPrediction - Predicted value of train data
Accuracy - RMSE and MAPE for train data
References
Aminghafari, M. and Poggi, J.M. 2012. Nonstationary time series forecasting using wavelets and kernel smoothing. Communications in Statistics-Theory and Methods, 41(3),485-499.
Paul, R.K. A and Anjoy, P. 2018. Modeling fractionally integrated maximum temperature series in India in presence of structural break. Theory and Applied Climatology 134, 241–249.
Examples
N <- 100
PHI <- 0.2
THETA <- 0.1
SD <- 1
M <- 0
D <- 0.2
Seed <- 123
set.seed(Seed)
Sim.Series <- fracdiff::fracdiff.sim(n = N,ar=c(PHI),ma=c(THETA),d=D,rand.gen =rnorm,sd=SD,mu=M)
simts <- as.ts(Sim.Series$series)
WaveletForecast<-WaveletFittingann(ts=simts,Waveletlevels=3,Filter='d4',
nonseaslag=5,hidden=3,NForecast=5)