PlotDistDensityBeta {WVPlots} | R Documentation |
Plot empirical rate data as a density with the matching beta distribution
Description
Compares empirical rate data to a beta distribution with the same mean and standard deviation.
Usage
PlotDistDensityBeta(
frm,
xvar,
title,
...,
curve_color = "lightgray",
beta_color = "blue",
mean_color = "blue",
sd_color = "darkgray"
)
Arguments
frm |
data frame to get values from |
xvar |
name of the independent (input or model) column in frame |
title |
title to place on plot |
... |
force later arguments to bind by name |
curve_color |
color for empirical density curve |
beta_color |
color for matching theoretical beta |
mean_color |
color for mean line |
sd_color |
color for 1-standard deviation lines (can be NULL) |
Details
Plots the empirical density, the theoretical matching beta, the mean value, and plus/minus one standard deviation from the mean.
Examples
if (requireNamespace('data.table', quietly = TRUE)) {
# don't multi-thread during CRAN checks
data.table::setDTthreads(1)
}
set.seed(52523)
N = 100
pgray = 0.1 # rate of gray horses in the population
herd_size = round(runif(N, min=25, 50))
ngray = rbinom(N, herd_size, pgray)
hdata = data.frame(n_gray=ngray, herd_size=herd_size)
# observed rate of gray horses in each herd
hdata$rate_gray = with(hdata, ngray/herd_size)
title = "Observed prevalence of gray horses in population"
PlotDistDensityBeta(hdata, "rate_gray", title) +
ggplot2::geom_vline(xintercept = pgray, linetype=4, color="maroon") +
ggplot2::annotate("text", x=pgray+0.01, y=0.01, hjust="left",
label = paste("True prevalence =", pgray))
# # no sd lines
# PlotDistDensityBeta(hdata, "rate_gray", title,
# sd_color=NULL)
[Package WVPlots version 1.3.8 Index]