yuen {WRS2} | R Documentation |
Independent samples t-tests on robust location measures including effect sizes.
Description
The function yuen
performs Yuen's test for trimmed means, yuenbt
is a bootstrap version of it. akp.effect
and yuen.effect.ci
can be used for effect size computation. The pb2gen
function performs a t-test based on various robust estimators, medpb2
compares two independent groups using medians, and qcomhd
compares arbitrary quantiles.
Usage
yuen(formula, data, tr = 0.2, ...)
yuenbt(formula, data, tr = 0.2, nboot = 599, side = TRUE, ...)
akp.effect(formula, data, EQVAR = TRUE, tr = 0.2, nboot = 200, alpha = 0.05, ...)
yuen.effect.ci(formula, data, tr = 0.2, nboot = 400, alpha = 0.05, ...)
pb2gen(formula, data, est = "mom", nboot = 599, ...)
medpb2(formula, data, nboot = 2000, ...)
qcomhd(formula, data, q = c(0.1, 0.25, 0.5, 0.75, 0.9),
nboot = 2000, alpha = 0.05, ADJ.CI = TRUE, ...)
Arguments
formula |
an object of class formula. |
data |
an optional data frame for the input data. |
tr |
trim level for the mean. |
nboot |
number of bootstrap samples. |
side |
|
est |
estimate to be used for the group comparisons: either |
q |
quantiles to be used for comparison. |
alpha |
alpha level. |
ADJ.CI |
whether CIs should be adjusted. |
EQVAR |
whether variances are assumed to be equal across groups. |
... |
currently ignored. |
Details
If yuenbt
is used, p-value computed only when side = TRUE
. medpb2
is just a wrapper function for pb2gen
with the median
as M-estimator. It is the only known method to work well in simulations when tied values are likely to occur.qcomhd
returns p-values and critical p-values based on Hochberg's method.
Value
Returns objects of classes "yuen"
or "pb2"
containing:
test |
value of the test statistic (t-statistic) |
p.value |
p-value |
conf.int |
confidence interval |
df |
degress of freedom |
diff |
trimmed mean difference |
effsize |
explanatory measure of effect size |
call |
function call |
qcomhd
returns an object of class "robtab"
containing:
partable |
parameter table |
References
Algina, J., Keselman, H.J., & Penfield, R.D. (2005). An alternative to Cohen's standardized mean difference effect size: A robust parameter and confidence interval in the two independent groups case. Psychological Methods, 10, 317-328.
Wilcox, R. (2012). Introduction to Robust Estimation and Hypothesis Testing (3rd ed.). Elsevier.
Wilcox, R., & Tian, T. (2011). Measuring effect size: A robust heteroscedastic approach for two or more groups. Journal of Applied Statistics, 38, 1359-1368.
Yuen, K. K. (1974). The two sample trimmed t for unequal population variances. Biometrika, 61, 165-170.
See Also
Examples
set.seed(123)
## Yuen's test
yuen(Anxiety ~ Group, data = spider)
## Bootstrap version of Yuen's test (symmetric CIs)
yuenbt(Anxiety ~ Group, data = spider)
## Robust Cohen's delta
akp.effect(Anxiety ~ Group, data = spider)
## Using an M-estimator
pb2gen(Anxiety ~ Group, data = spider, est = "mom")
pb2gen(Anxiety ~ Group, data = spider, est = "mean")
pb2gen(Anxiety ~ Group, data = spider, est = "median")
## Using the median
medpb2(Anxiety ~ Group, data = spider)
## Quantiles
set.seed(123)
qcomhd(Anxiety ~ Group, data = spider, q = c(0.8, 0.85, 0.9), nboot = 500)