pwreg {WR} | R Documentation |
Fit a standard proportional win-fractions (PW) regression model
Description
Fit a standard proportional win-fractions (PW) regression model.
Usage
pwreg(
ID,
time,
status,
Z,
rho = 0,
strata = NULL,
fixedL = TRUE,
eps = 1e-04,
maxiter = 50
)
Arguments
ID |
a vector of unique subject-level identifiers. |
time |
a vector of event times. |
status |
a vector of event type labels. 0: censoring, 1:death and 2: non-fatal event. |
Z |
a matrix or a vector of covariates. |
rho |
a non-negative number as the power of the survival function used
in the weight. Default ( |
strata |
a vector of stratifying variable if a stratified model is desired. |
fixedL |
logical variable indicating which variance estimator to be used. If 'TRUE', the type I variance estimator (for a small number strata) is used; otherwise the type II variance estimator (for a large number strata) is used. |
eps |
precision for the convergence of Newton-Raphson algorithm. |
maxiter |
maximum number of iterations allow for the Newton-Raphson algorithm. |
Value
An object of class pwreg
with the following components.
beta
:a vector of estimated regression coefficients. Var
:estimated
covariance matrix for beta
. conv:
boolean variable indicating
whether the algorithm converged within the maximum number of iterations.
References
Mao, L. and Wang, T. (2020). A class of proportional win-fractions regression models for composite outcomes. Biometrics, 10.1111/biom.13382
Wang, T. and Mao, L. (2021+). Stratified Proportional Win-fractions Regression Analysis.
See Also
Examples
library(WR)
head(non_ischemic)
id_unique <-unique(non_ischemic$ID)
# Randomly sample 200 subjects from non_ischemic data
set.seed(2019)
id_sample <- sample(id_unique, 200)
non_ischemic_reduce <- non_ischemic[non_ischemic$ID %in% id_sample, ]
# Use the reduced non_ischemic data for analysis
nr <- nrow(non_ischemic_reduce)
p <- ncol(non_ischemic_reduce)-3
ID <- non_ischemic_reduce[,"ID"]
time <- non_ischemic_reduce[,"time"]
status <- non_ischemic_reduce[,"status"]
Z <- as.matrix(non_ischemic_reduce[,4:(3+p)],nr,p)
## unstratified analysis
pwreg.obj <- pwreg(time=time,status=status,Z=Z,ID=ID)
print(pwreg.obj)
## Not run:
## stratified PW by sex
sex<-Z[,3]
## take out sex from the covariate matrix
Z1<-Z[,-3]
pwreg.obj1 <- pwreg(time=time,status=status,Z=Z1,ID=ID,strata=sex)
print(pwreg.obj1)
## End(Not run)