base {WR}R Documentation

Compute the baseline parameters needed for sample size calculation for standard win ratio test

Description

Compute the baseline parameters ζ02\zeta_0^2 and δ0\boldsymbol\delta_0 needed for sample size calculation for standard win ratio test (see WRSS). The calculation is based on a Gumbel–Hougaard copula model for survival time D(a)D^{(a)} and nonfatal event time T(a)T^{(a)} for group aa (1: treatment; 0: control):

P(D(a)>s,T(a)>t)=exp([{exp(aξ1)λDs}κ+{exp(aξ2)λHt}κ]1/κ),{P}(D^{(a)}>s, T^{(a)}>t) =\exp\left(-\left[\left\{\exp(a\xi_1)\lambda_Ds\right\}^\kappa+ \left\{\exp(a\xi_2)\lambda_Ht\right\}^\kappa\right]^{1/\kappa}\right),

where ξ1\xi_1 and ξ2\xi_2 are the component-wise log-hazard ratios to be used as effect size in WRSS. We also assume that patients are recruited uniformly over the period [0,τb][0, \tau_b] and followed until time τ\tau (ττb\tau\geq\tau_b), with an exponential loss-to-follow-up hazard λL\lambda_L.

Usage

base(lambda_D, lambda_H, kappa, tau_b, tau, lambda_L, N = 1000, seed = 12345)

Arguments

lambda_D

Baseline hazard λD\lambda_D for death.

lambda_H

Baseline hazard λH\lambda_H for nonfatal event.

kappa

Gumbel–Hougaard copula correlation parameter κ\kappa.

tau_b

Length of the initial (uniform) accrual period τb\tau_b.

tau

Total length of follow-up τ\tau.

lambda_L

Exponential hazard rate λL\lambda_L for random loss to follow-up.

N

Simulated sample size for monte-carlo integration.

seed

Seed for monte-carlo simulation.

Value

A list containing real number zeta2 for ζ02\zeta_0^2 and bivariate vector delta for δ0\boldsymbol\delta_0.

References

Mao, L., Kim, K. and Miao, X. (2021). Sample size formula for general win ratio analysis. Biometrics, https://doi.org/10.1111/biom.13501.

See Also

gumbel.est, WRSS

Examples

# see the example for WRSS

[Package WR version 1.0 Index]