kdeC {WPKDE} | R Documentation |
weighted kernel density estimation
Description
fast weighted kernel density estimation for 2-dimension and calling C function to implement the calculation procedure
Usage
kdeC(x,H,gridsize,cutNum,w)
Arguments
x |
data points in the format n*2 matrix |
H |
bandwidth, a vector containing 2 num values and set c(0.01,0.01) as default |
gridsize |
number of points for each direction, a vector containing 2 int values and set c(200,50) as default |
cutNum |
number of pieces to be cutted for each direction, a vector containing 2 int values and set c(1,1) as default |
w |
weight, a vector corresponding to parameter |
Details
The function kdeC
is only suitable for 2-dimension data. The advantage of kdeC
is that it can get the result quickly because the calculation procedure is implemented in C code.
Value
the returned value is a list
estimate |
density estimate at points |
evalpointsX |
points at which the |
evalpointsY |
points at which the |
Author(s)
Kunyu Ye
References
R package 'ks'
Examples
data.gen<-function(n.peaks=100, N=1e5, max.var=0.001, max.corr=0.5)
{
library(mvtnorm)
dat<-matrix(0, nrow=N, ncol=2)
all.m<-c(NA,NA)
for(i in 1:n.peaks)
{
this.m<-runif(2)
this.var<-runif(2, min=0.1*max.var, max=max.var)
this.cov<-runif(1, min=-1*max.corr, max=max.corr) * sqrt(this.var[1])* sqrt(this.var[2])
this.s<-matrix(c(this.var[1], this.cov, this.cov, this.var[2]),ncol=2)
dat[((i-1)*N/n.peaks+1):(i*N/n.peaks),]<-rmvnorm(N/n.peaks, mean=this.m, sigma=this.s)
all.m<-rbind(all.m, this.m)
}
all.m[,1]<-(all.m[,1]-min(dat[,1]))/diff(range(dat[,1]))
all.m[,2]<-(all.m[,2]-min(dat[,2]))/diff(range(dat[,2]))
dat[,1]<-(dat[,1]-min(dat[,1]))/diff(range(dat[,1]))
dat[,2]<-(dat[,2]-min(dat[,2]))/diff(range(dat[,2]))
all.m<-all.m[-1,]
return(list(dat=dat,m=all.m))
}
r<-data.gen(n.peaks=100, N=1e5, max.var=0.001, max.corr=0.5)
k1<-kdeC(r$dat, H=c(0.005,0.005), gridsize = c(501,501), cutNum=c(1,1))
k2<-kdeC(r$dat, H=c(0.005,0.005), gridsize = c(101,101), cutNum=c(5,5))