svdLSplus {WALS} | R Documentation |
Internal function: Uses SVD components to compute final estimate via Sherman-Morrison-Woodbury formula.
Description
Solves the equation system in walsNB via Sherman-Morrison-Woodbury formula
for the unrestricted estimator \hat{\gamma}_{u}
.
Usage
svdLSplus(U, V, singularVals, y, ell, geB)
Arguments
U |
Left singular vectors of |
V |
Right singular vectors of |
singularVals |
Singular values of |
y |
"Pseudo"-response, see details. |
ell |
Vector |
geB |
Scalar |
Details
The function can be reused for the computation of the fully restricted
estimator \tilde{\gamma}_{1r}
and the model averaged estimator
\hat{\gamma}_{1}
.
For \tilde{\gamma}_{1r}
and \hat{\gamma}_{1}
use
U
, V
and singularVals
from SVD of \bar{Z}_{1}
.
For \hat{\gamma}_{u}
and \tilde{\gamma}_{1r}
use same
pseudo-response \bar{y_{0}} - \bar{t} \bar{\epsilon} \bar{\Psi}^{-1/2} \bar{q}
in argument y
.
For \hat{\gamma}_{1}
use pseudo-response
\bar{y_{0}} - \bar{t} \bar{\epsilon} \bar{\Psi}^{-1/2} \bar{q} -
(\bar{Z}_{2} + \bar{g} \bar{\epsilon} \bar{\Psi}^{-1/2} \bar{q} \bar{q}^{\top}
Z_{2}) \hat{\gamma}_{2}
.
See section "Note on function svdLSplus from WALS" in Huynh (2024b).
References
Huynh K (2024b). “WALS: Weighted-Average Least Squares Model Averaging in R.” University of Basel. Mimeo.