computeGamma1r {WALS} | R Documentation |
Internal function: Computes fully restricted one-step ML estimator for transformed regressors in walsNB
Description
Computes one-step ML estimator of fully restricted model
(coefs of transformed regressors of \bar{Z}_1
)
in walsNB by using SVD on transformed design matrix of the focus regressors
\bar{Z}_1
. The matrix \bar{Z_1}
should have full column rank.
Usage
computeGamma1r(
U,
V,
singularVals,
ellStart,
gStart,
epsilonStart,
qStart,
y0Start,
tStart,
psiStart
)
Arguments
U |
Left singular vectors of |
V |
Right singular vectors of |
singularVals |
Singular values of |
ellStart |
Vector |
gStart |
Derivative of dispersion parameter |
epsilonStart |
Scalar |
qStart |
Vector |
y0Start |
Vector |
tStart |
Scalar |
psiStart |
Diagonal matrix |
Details
See section "Simplification for computing \tilde{\gamma}_{1r}
"
in the appendix of Huynh (2024b) for details of the
implementation and for the definitions of argument ellStart
.
All parameters that contain "start" feature the starting values for the one-step ML estimation of submodels. See section "One-step ML estimator" of Huynh (2024a) for details.
Uses svdLSplus
under-the-hood.
References
Huynh K (2024a).
“Weighted-Average Least Squares for Negative Binomial Regression.”
arXiv 2404.11324, arXiv.org E-Print Archive.
doi:10.48550/arXiv.2404.11324.
Huynh K (2024b).
“WALS: Weighted-Average Least Squares Model Averaging in R.”
University of Basel.
Mimeo.