OptimalHbi {VsusP} | R Documentation |
Variable selection using shrinkage priors :: OptimalHbi
Description
OptimalHbi function will take b.i and H.b.i as input which comes from the result of TwoMeans function. It will return plot from which you can infer about H: the optimal value of the tuning parameter.
Usage
OptimalHbi(bi, Hbi)
Arguments
bi |
a vector holding the values of the tuning parameter specified by the user |
Hbi |
The estimated number of signals corresponding to each b.i of numeric data type |
Value
the optimal value (numeric) of tuning parameter and the associated H value
References
Makalic, E. & Schmidt, D. F. High-Dimensional Bayesian Regularised Regression with the BayesReg Package arXiv:1611.06649, 2016
Li, H., & Pati, D. Variable selection using shrinkage priors Computational Statistics & Data Analysis, 107, 107-119.
Examples
n <- 10
p <- 5
X <- matrix(rnorm(n * p), n, p)
beta <- exp(rnorm(p))
Y <- as.vector(X %*% beta + rnorm(n, 0, 1))
df <- data.frame(X, Y)
rv.hs <- bayesreg::bayesreg(Y ~ ., df, "gaussian", "horseshoe+", 110, 100)
Beta <- t(rv.hs$beta)
lower <- 0
upper <- 1
l <- 5
S2Mbeta <- Sequential2MeansBeta(Beta, lower, upper, l)
bi <- S2Mbeta$b.i
Hbi <- S2Mbeta$H.b.i
OptimalHbi(bi, Hbi)
[Package VsusP version 1.0.0 Index]