| RVinePDF {VineCopula} | R Documentation |
PDF of an R-Vine Copula Model
Description
This function calculates the probability density function of a d-dimensional R-vine copula.
Usage
RVinePDF(newdata, RVM, verbose = TRUE)
Arguments
newdata |
An N x d data matrix that specifies where the density shall be evaluated. |
RVM |
An |
verbose |
In case something goes wrong, additional output will be plotted. |
Details
The density of a d-dimensional R-vine copula with d-1 trees and
corresponding edge sets E_1,...,E_{d-1} is given by
\prod_{\ell=1}^{d-1} \prod_{e\in E_\ell }
c_{j(e),k(e)|D(e)}(F(u_{j(e)}|u_{D(e)}),F(u_{k(e)}|u_{D(e)})|\theta_{j(e),k(e)|D(e)}),
where
\boldsymbol{u}=(u_{1},...,u_{d})^\prime\in[0,1]^d.
Further c_{j(e),k(e)|D(e)} denotes a bivariate copula density
associated to an edge e and with parameter(s)
\boldsymbol{\theta}_{j(e),k(e)|D(e)}.
Conditional distribution functions such as
F(u_{j(e)}|\boldsymbol{u}_{D(e)}) are obtained
recursively using the relationship
h(u|\boldsymbol{v},\boldsymbol{\theta}) := F(u|\boldsymbol{v}) =
d C_{uv_j|v_{-j}}(F(u|v_{-j}),F(v_j|v_{-j}))/d F(v_j|v_{-j}),
where
C_{uv_j|\boldsymbol{v}_{-j}} is a bivariate copula
distribution function with parameter(s) \boldsymbol{\theta}
and \boldsymbol{v}_{-j} denotes a vector with the j-th
component v_j removed. The notation of h-functions is introduced for
convenience. For more details see Dissmann et al. (2013).
The function is actually just a wrapper to RVineLogLik().
Author(s)
Thomas Nagler
References
Dissmann, J. F., E. C. Brechmann, C. Czado, and D. Kurowicka (2013). Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics & Data Analysis, 59 (1), 52-69.
See Also
BiCopHfunc(), RVineMatrix(),
RVineMLE(), RVineAIC(), RVineBIC()
Examples
# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
0, 2, 3, 4, 1,
0, 0, 3, 4, 1,
0, 0, 0, 4, 1,
0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)
# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
0, 0, 3, 4, 1,
0, 0, 0, 4, 1,
0, 0, 0, 0, 3,
0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)
# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
0, 0, 1.1, 1.6, 0.9,
0, 0, 0, 1.9, 0.5,
0, 0, 0, 0, 4.8,
0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)
# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)
# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
par = par, par2 = par2,
names = c("V1", "V2", "V3", "V4", "V5"))
# compute the density at (0.1, 0.2, 0.3, 0.4, 0.5)
RVinePDF(c(0.1, 0.2, 0.3, 0.4, 0.5), RVM)