BiCopTau2Par {VineCopula} | R Documentation |
Parameter of a Bivariate Copula for a given Kendall's Tau Value
Description
This function computes the parameter of a (one parameter) bivariate copula for a given value of Kendall's tau.
Usage
BiCopTau2Par(family, tau, check.taus = TRUE)
Arguments
family |
integer; single number or vector of size |
tau |
numeric; single number or vector of size |
check.taus |
logical; default is |
Value
Parameter (vector) corresponding to the bivariate copula family and
the value(s) of Kendall's tau (\tau
).
No.
(family ) | Parameter (par ) |
1, 2 |
\sin(\tau \frac{\pi}{2}) |
3, 13 |
2\frac{\tau}{1-\tau} |
4, 14 |
\frac{1}{1-\tau} |
5 | no closed form expression (numerical inversion) |
6, 16 | no closed form expression (numerical inversion) |
23, 33 |
2\frac{\tau}{1+\tau} |
24, 34 |
-\frac{1}{1+\tau} |
26, 36 | no closed form expression (numerical inversion) |
Note
The number n
can be chosen arbitrarily, but must agree across
arguments.
Author(s)
Jakob Stoeber, Eike Brechmann, Tobias Erhardt
References
Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.
Czado, C., U. Schepsmeier, and A. Min (2012). Maximum likelihood estimation of mixed C-vines with application to exchange rates. Statistical Modelling, 12(3), 229-255.
See Also
Examples
## Example 1: Gaussian copula
tau0 <- 0.5
rho <- BiCopTau2Par(family = 1, tau = tau0)
BiCop(1, tau = tau0)$par # alternative
## Example 2:
vtau <- seq(from = 0.1, to = 0.8, length.out = 100)
thetaC <- BiCopTau2Par(family = 3, tau = vtau)
thetaG <- BiCopTau2Par(family = 4, tau = vtau)
thetaF <- BiCopTau2Par(family = 5, tau = vtau)
thetaJ <- BiCopTau2Par(family = 6, tau = vtau)
plot(thetaC ~ vtau, type = "l", ylim = range(thetaF))
lines(thetaG ~ vtau, col = 2)
lines(thetaF ~ vtau, col = 3)
lines(thetaJ ~ vtau, col = 4)
## Example 3: different copula families
theta <- BiCopTau2Par(family = c(3,4,6), tau = c(0.4, 0.5, 0.6))
BiCopPar2Tau(family = c(3,4,6), par = theta)