| BiCopPar2TailDep {VineCopula} | R Documentation | 
Tail Dependence Coefficients of a Bivariate Copula
Description
This function computes the theoretical tail dependence coefficients of a bivariate copula for given parameter values.
Usage
BiCopPar2TailDep(family, par, par2 = 0, obj = NULL, check.pars = TRUE)
Arguments
family | 
 integer; single number or vector of size   | 
par | 
 numeric; single number or vector of size   | 
par2 | 
 numeric; single number or vector of size   | 
obj | 
 
  | 
check.pars | 
 logical; default is   | 
Details
If the family and parameter specification is stored in a BiCop object
obj, the alternative version 
 
BiCopPar2TailDep(obj)
can be used.
Value
lower | 
 Lower tail dependence coefficient for the given
bivariate copula  
  | 
upper | 
 Upper tail dependence coefficient for the given bivariate
copula family  
  | 
Lower and upper tail dependence coefficients for bivariate copula families
and parameters (\theta for one parameter families and the first
parameter of the t-copula with \nu degrees of freedom,
\theta and \delta for the two parameter BB1, BB6, BB7 and BB8 copulas)
are given in the following table.
| No. | Lower tail dependence | Upper tail dependence | 
1  | - | - | 
2  | 
2t_{\nu+1}\left(-\sqrt{\nu+1}\sqrt{\frac{1-\theta}{1+\theta}}\right)
 | 
2t_{\nu+1}\left(-\sqrt{\nu+1}\sqrt{\frac{1-\theta}{1+\theta}}\right)  | 
3  |  2^{-1/\theta}  | - | 
4  | - |  2-2^{1/\theta}  | 
5  | - | - | 
6  | - |  2-2^{1/\theta}  | 
7  |  2^{-1/(\theta\delta)}  |  2-2^{1/\delta}  | 
8  | - |  2-2^{1/(\theta\delta)}  | 
9  |  2^{-1/\delta}  |  2-2^{1/\theta}  | 
10  | - |  2-2^{1/\theta} if \delta=1 otherwise 0  | 
13  | - |  2^{-1/\theta}  | 
14  |  2-2^{1/\theta}  | - | 
16  |  2-2^{1/\theta}  | - | 
17  |  2-2^{1/\delta}  |  2^{-1/(\theta\delta)}  | 
18  |  2-2^{1/(\theta\delta)}  | - | 
19  |  2-2^{1/\theta}  |  2^{-1/\delta}  | 
20  |  2-2^{1/\theta} if \delta=1 otherwise 0  | - | 
23, 33  | - | - | 
 24, 34  | - | - | 
26, 36  | - | - | 
27, 37  | - | - | 
28, 38  | - | - | 
29, 39  | - | - | 
30, 40  | - | - | 
104,204  | - |  \delta+1-(\delta^{\theta}+1)^{1/\theta}  | 
114, 214  |  1+\delta-(\delta^{\theta}+1)^{1/\theta}  | - | 
124, 224  | - | - | 
134, 234  | - | - | 
Note
The number n can be chosen arbitrarily, but must agree across
arguments.
Author(s)
Eike Brechmann
References
Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.
See Also
Examples
## Example 1: Gaussian copula
BiCopPar2TailDep(1, 0.7)
BiCop(1, 0.7)$taildep  # alternative
## Example 2: Student-t copula
BiCopPar2TailDep(2, c(0.6, 0.7, 0.8), 4)
## Example 3: different copula families
BiCopPar2TailDep(c(3, 4, 6), 2)