BiCopMetaContour {VineCopula} | R Documentation |
Contour Plot of Bivariate Meta Distribution
Description
Note: This function is deprecated and only available for backwards
compatibility. See contour.BiCop()
for contour plots of
parametric copulas, and BiCopKDE()
for kernel estimates.
Usage
BiCopMetaContour(
u1 = NULL,
u2 = NULL,
bw = 1,
size = 100,
levels = c(0.01, 0.05, 0.1, 0.15, 0.2),
family = "emp",
par = 0,
par2 = 0,
PLOT = TRUE,
margins = "norm",
margins.par = 0,
xylim = NA,
obj = NULL,
...
)
Arguments
u1 , u2 |
Data vectors of equal length with values in [0,1] (default:
u1 and u2 = NULL ).
|
bw |
Bandwidth (smoothing factor; default: bw = 1 ).
|
size |
Number of grid points; default: size = 100 .
|
levels |
Vector of contour levels. For Gaussian, Student-t or
exponential margins the default value (levels = c(0.01, 0.05, 0.1, 0.15, 0.2) ) typically is a good choice. For uniform margins we
recommend levels = c(0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5)
and for Gamma margins levels = c(0.005, 0.01, 0.03, 0.05, 0.07, 0.09) .
|
family |
An integer defining the bivariate copula family or indicating
an empirical contour plot:
"emp" = empirical contour plot
(default; margins can be specified by margins )
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; survival Gumbel”)
16 = rotated Joe copula (180 degrees; survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; survival BB1”)
18 = rotated BB6 copula (180 degrees; survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)
|
par |
Copula parameter; if empirical contour plot, par = NULL or
0 (default).
|
par2 |
Second copula parameter for t-, BB1, BB6, BB7, BB8, Tawn type 1
and type 2 copulas (default: par2 = 0 ).
|
PLOT |
Logical; whether the results are plotted. If PLOT = FALSE , the values x , y and z are returned (see below;
default: PLOT = TRUE ).
|
margins |
Character; margins for the bivariate copula contour plot.
Possible margins are:
"norm" = standard normal margins (default)
"t" = Student t margins with degrees of freedom as
specified by margins.par
"gamma" = Gamma margins with shape and scale as
specified by margins.par
"exp" = Exponential margins with rate as
specified by margins.par
"unif" = uniform margins
|
margins.par |
Parameter(s) of the distribution of the margins if
necessary (default: margins.par = 0 ), i.e.,
a positive real number for the degrees of freedom of
Student t margins (see dt() ),
a 2-dimensional vector of positive real numbers for
the shape and scale parameters of Gamma margins (see dgamma() ),
a positive real number for the rate parameter of
exponential margins (see dexp() ).
|
xylim |
A 2-dimensional vector of the x- and y-limits. By default
(xylim = NA ) standard limits for the selected margins are used.
|
obj |
BiCop object containing the family and parameter
specification.
|
... |
Additional plot arguments.
|
Value
x |
A vector of length size with the x-values of the
kernel density estimator with Gaussian kernel if the empirical contour plot
is chosen and a sequence of values in xylim if the theoretical
contour plot is chosen.
|
y |
A vector of length size with the
y-values of the kernel density estimator with Gaussian kernel if the
empirical contour plot is chosen and a sequence of values in xylim if
the theoretical contour plot is chosen.
|
z |
A matrix of dimension
size with the values of the density of the meta distribution with
chosen margins (see margins and margins.par ) evaluated at the
grid points given by x and y .
|
Note
The combination family = 0
(independence copula) and
margins = "unif"
(uniform margins) is not possible because all
z
-values are equal.
Author(s)
Ulf Schepsmeier, Alexander Bauer
See Also
BiCopChiPlot()
, BiCopKPlot()
,
BiCopLambda()
Examples
## meta Clayton distribution with Gaussian margins
cop <- BiCop(family = 1, tau = 0.5)
BiCopMetaContour(obj = cop, main = "Clayton - normal margins")
# better:
contour(cop, main = "Clayton - normal margins")
## empirical contour plot with standard normal margins
dat <- BiCopSim(1000, cop)
BiCopMetaContour(dat[, 1], dat[, 2], bw = 2, family = "emp",
main = "empirical - normal margins")
# better:
BiCopKDE(dat[, 1], dat[, 2],
main = "empirical - normal margins")
## empirical contour plot with exponential margins
BiCopMetaContour(dat[, 1], dat[, 2], bw = 2,
main = "empirical - exponential margins",
margins = "exp", margins.par = 1)
# better:
BiCopKDE(dat[, 1], dat[, 2],
main = "empirical - exponential margins",
margins = "exp")
[Package
VineCopula version 2.5.0
Index]