| BiCopHfuncDeriv2 {VineCopula} | R Documentation |
Second Derivatives of the h-Function of a Bivariate Copula
Description
This function evaluates the second derivative of a given conditional parametric bivariate copula (h-function) with respect to its parameter(s) and/or its arguments.
Usage
BiCopHfuncDeriv2(
u1,
u2,
family,
par,
par2 = 0,
deriv = "par",
obj = NULL,
check.pars = TRUE
)
Arguments
u1, u2 |
numeric vectors of equal length with values in |
family |
integer; single number or vector of size |
par |
numeric; single number or vector of size |
par2 |
integer; single number or vector of size |
deriv |
Derivative argument |
obj |
|
check.pars |
logical; default is |
Details
If the family and parameter specification is stored in a BiCop()
object obj, the alternative version
BiCopHfuncDeriv2(u1, u2, obj, deriv = "par")
can be used.
Value
A numeric vector of the second-order conditional bivariate copula derivative
of the copula
familywith parameter(s)
par,par2with respect to
derivevaluated at
u1andu2.
Author(s)
Ulf Schepsmeier, Jakob Stoeber
References
Schepsmeier, U. and J. Stoeber (2014). Derivatives and Fisher
information of bivariate copulas. Statistical Papers, 55 (2), 525-542.
https://link.springer.com/article/10.1007/s00362-013-0498-x.
See Also
RVineGrad(), RVineHessian(),
BiCopDeriv(), BiCopDeriv2(),
BiCopHfuncDeriv(), BiCop()
Examples
## simulate from a bivariate Student-t copula
set.seed(123)
cop <- BiCop(family = 2, par = -0.7, par2 = 4)
simdata <- BiCopSim(100, cop)
## second derivative of the conditional bivariate t-copula
## with respect to the first parameter
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopHfuncDeriv2(u1, u2, cop, deriv = "par")
## estimate a Student-t copula for the simulated data
cop <- BiCopEst(u1, u2, family = 2)
## and evaluate the derivative of the conditional copula
## w.r.t. the second argument u2
BiCopHfuncDeriv2(u1, u2, cop, deriv = "u2")