| BiCopHfuncDeriv {VineCopula} | R Documentation |
Derivatives of the h-Function of a Bivariate Copula
Description
This function evaluates the derivative of a given conditional parametric bivariate copula (h-function) with respect to its parameter(s) or one of its arguments.
Usage
BiCopHfuncDeriv(
u1,
u2,
family,
par,
par2 = 0,
deriv = "par",
obj = NULL,
check.pars = TRUE
)
Arguments
u1, u2 |
numeric vectors of equal length with values in |
family |
integer; single number or vector of size |
par |
numeric; single number or vector of size |
par2 |
integer; single number or vector of size |
deriv |
Derivative argument |
obj |
|
check.pars |
logical; default is |
Details
If the family and parameter specification is stored in a BiCop()
object obj, the alternative version
BiCopHfuncDeriv(u1, u2, obj, deriv = "par")
can be used.
Value
A numeric vector of the conditional bivariate copula derivative
of the copula
family,with parameter(s)
par,par2,with respect to
deriv,evaluated at
u1andu2.
Author(s)
Ulf Schepsmeier
References
Schepsmeier, U. and J. Stoeber (2014). Derivatives and Fisher
information of bivariate copulas. Statistical Papers, 55 (2), 525-542.
https://link.springer.com/article/10.1007/s00362-013-0498-x.
See Also
RVineGrad(), RVineHessian(),
BiCopDeriv2(), BiCopDeriv2(),
BiCopHfuncDeriv(), BiCop()
Examples
## simulate from a bivariate Student-t copula
set.seed(123)
cop <- BiCop(family = 2, par = -0.7, par2 = 4)
simdata <- BiCopSim(100, cop)
## derivative of the conditional Student-t copula
## with respect to the first parameter
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopHfuncDeriv(u1, u2, cop, deriv = "par")
## estimate a Student-t copula for the simulated data
cop <- BiCopEst(u1, u2, family = 2)
## and evaluate the derivative of the conditional copula
## w.r.t. the second argument u2
BiCopHfuncDeriv(u1, u2, cop, deriv = "u2")