BiCopCondSim {VineCopula} | R Documentation |
Conditional simulation from a Bivariate Copula
Description
This function simulates from a parametric bivariate copula, where on of
the variables is fixed. I.e., we simulate either from
C_{2|1}(u_2|u_1;\theta)
or C_{1|2}(u_1|u_2;\theta)
, which are both
conditional distribution functions of one variable given another.
Usage
BiCopCondSim(
N,
cond.val,
cond.var,
family,
par,
par2 = 0,
obj = NULL,
check.pars = TRUE
)
Arguments
N |
Number of observations simulated.
|
cond.val |
numeric vector of length N containing the values to
condition on.
|
cond.var |
either 1 or 2 ; the variable to condition on.
|
family |
integer; single number or vector of size N ; defines the
bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; survival Gumbel”)
16 = rotated Joe copula (180 degrees; survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; survival BB1”)
18 = rotated BB6 copula (180 degrees; survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; survival BB7”)
20 = rotated BB8 copula (180 degrees; “survival BB8”)
23 = rotated Clayton copula (90 degrees)
'24' = rotated Gumbel copula (90 degrees)
'26' = rotated Joe copula (90 degrees)
'27' = rotated BB1 copula (90 degrees)
'28' = rotated BB6 copula (90 degrees)
'29' = rotated BB7 copula (90 degrees)
'30' = rotated BB8 copula (90 degrees)
'33' = rotated Clayton copula (270 degrees)
'34' = rotated Gumbel copula (270 degrees)
'36' = rotated Joe copula (270 degrees)
'37' = rotated BB1 copula (270 degrees)
'38' = rotated BB6 copula (270 degrees)
'39' = rotated BB7 copula (270 degrees)
'40' = rotated BB8 copula (270 degrees)
'104' = Tawn type 1 copula
'114' = rotated Tawn type 1 copula (180 degrees)
'124' = rotated Tawn type 1 copula (90 degrees)
'134' = rotated Tawn type 1 copula (270 degrees)
'204' = Tawn type 2 copula
'214' = rotated Tawn type 2 copula (180 degrees)
'224' = rotated Tawn type 2 copula (90 degrees)
'234' = rotated Tawn type 2 copula (270 degrees)
|
par |
numeric; single number or vector of size N ; copula
parameter.
|
par2 |
numeric; single number or vector of size N ; second
parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8,
Tawn type 1 and type 2; default: par2 = 0 ). par2 should be a
positive integer for the Students's t copula family = 2 .
|
obj |
BiCop object containing the family and parameter
specification.
|
check.pars |
logical; default is TRUE ; if FALSE , checks
for family/parameter-consistency are omitted (should only be used with
care).
|
Details
If the family and parameter specification is stored in a BiCop()
object obj
, the alternative version
BiCopCondSim(N, cond.val, cond.var, obj)
can be used.
Value
A length N
vector of simulated from conditional distributions
related to bivariate copula with family
and parameter(s) par
,
par2
.
Author(s)
Thomas Nagler
See Also
BiCopCDF()
, BiCopPDF()
,
RVineSim()
Examples
# create bivariate t-copula
obj <- BiCop(family = 2, par = -0.7, par2 = 4)
# simulate 500 observations of (U1, U2)
sim <- BiCopSim(500, obj)
hist(sim[, 1]) # data have uniform distribution
hist(sim[, 2]) # data have uniform distribution
# simulate 500 observations of (U2 | U1 = 0.7)
sim1 <- BiCopCondSim(500, cond.val = 0.7, cond.var = 1, obj)
hist(sim1) # not uniform!
# simulate 500 observations of (U1 | U2 = 0.1)
sim2 <- BiCopCondSim(500, cond.val = 0.1, cond.var = 2, obj)
hist(sim2) # not uniform!
[Package
VineCopula version 2.5.0
Index]