uniform {VaRES} | R Documentation |
Uniform distribution
Description
Computes the pdf, cdf, value at risk and expected shortfall for the uniform distribution given by
\begin{array}{ll}
&\displaystyle
f (x) = \frac {1}{b - a},
\\
&\displaystyle
F (x) = \frac {x - a}{b - a},
\\
&\displaystyle
{\rm VaR}_p (X) = a + p (b - a),
\\
&\displaystyle
{\rm ES}_p (X) = a + \frac {p}{2} (b - a)
\end{array}
for a < x < b
, 0 < p < 1
, -\infty < a < \infty
, the first location parameter, and -\infty < a < b < \infty
, the second location parameter.
Usage
duniform(x, a=0, b=1, log=FALSE)
puniform(x, a=0, b=1, log.p=FALSE, lower.tail=TRUE)
varuniform(p, a=0, b=1, log.p=FALSE, lower.tail=TRUE)
esuniform(p, a=0, b=1)
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed |
p |
scaler or vector of values at which the value at risk or expected shortfall needs to be computed |
a |
the value of the first location parameter, can take any real value, the default is zero |
b |
the value of the second location parameter, can take any real value but must be greater than a, the default is 1 |
log |
if TRUE then log(pdf) are returned |
log.p |
if TRUE then log(cdf) are returned and quantiles are computed for exp(p) |
lower.tail |
if FALSE then 1-cdf are returned and quantiles are computed for 1-p |
Value
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
Author(s)
Saralees Nadarajah
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658
Examples
x=runif(10,min=0,max=1)
duniform(x)
puniform(x)
varuniform(x)
esuniform(x)