secant {VaRES} | R Documentation |
Hyperbolic secant distribution
Description
Computes the pdf, cdf, value at risk and expected shortfall for the hyperbolic secant distribution given by
\begin{array}{ll}
&\displaystyle
f (x) = \frac {1}{2} {\rm sech} \left( \frac {\pi x}{2} \right),
\\
&\displaystyle
F (x) = \frac {2}{\pi} \arctan \left[ \exp \left( \frac {\pi x}{2} \right) \right],
\\
&\displaystyle
{\rm VaR}_p (X) = \frac {2}{\pi} \log \left[ \tan \left( \frac {\pi p}{2} \right) \right],
\\
&\displaystyle
{\rm ES}_p (X) = \frac {2}{\pi p} \int_0^p \log \left[ \tan \left( \frac {\pi v}{2} \right) \right] dv
\end{array}
for -\infty < x < \infty
, and 0 < p < 1
.
Usage
dsecant(x, log=FALSE)
psecant(x, log.p=FALSE, lower.tail=TRUE)
varsecant(p, log.p=FALSE, lower.tail=TRUE)
essecant(p)
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed |
p |
scaler or vector of values at which the value at risk or expected shortfall needs to be computed |
log |
if TRUE then log(pdf) are returned |
log.p |
if TRUE then log(cdf) are returned and quantiles are computed for exp(p) |
lower.tail |
if FALSE then 1-cdf are returned and quantiles are computed for 1-p |
Value
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
Author(s)
Saralees Nadarajah
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658
Examples
x=runif(10,min=0,max=1)
dsecant(x)
psecant(x)
varsecant(x)
essecant(x)