schabe {VaRES} | R Documentation |
Schabe distribution
Description
Computes the pdf, cdf, value at risk and expected shortfall for the Schabe distribution due to Schabe (1994) given by
\begin{array}{ll}
&\displaystyle
f(x) = \frac {\displaystyle 2 \gamma + (1 - \gamma) x / \theta}{\displaystyle \theta (\gamma + x/\theta)^2},
\\
&\displaystyle
F(x) = \frac {\displaystyle (1 + \gamma) x}{\displaystyle x + \gamma \theta},
\\
&\displaystyle
{\rm VaR}_p (X) = \frac {p \gamma \theta}{1 + \gamma - p},
\\
&\displaystyle
{\rm ES}_p (X) = -\theta \gamma - \frac {\theta \gamma (1 + \gamma)}{p}
\log \frac {1 + \gamma - p}{1 + \gamma}
\end{array}
for x > 0
, 0 < p < 1
, 0 < \gamma < 1
, the first scale parameter, and \theta > 0
, the second scale parameter.
Usage
dschabe(x, gamma=0.5, theta=1, log=FALSE)
pschabe(x, gamma=0.5, theta=1, log.p=FALSE, lower.tail=TRUE)
varschabe(p, gamma=0.5, theta=1, log.p=FALSE, lower.tail=TRUE)
esschabe(p, gamma=0.5, theta=1)
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed |
p |
scaler or vector of values at which the value at risk or expected shortfall needs to be computed |
gamma |
the value of the first scale parameter, must be in the unit interval, the default is 0.5 |
theta |
the value of the second scale parameter, must be positive, the default is 1 |
log |
if TRUE then log(pdf) are returned |
log.p |
if TRUE then log(cdf) are returned and quantiles are computed for exp(p) |
lower.tail |
if FALSE then 1-cdf are returned and quantiles are computed for 1-p |
Value
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
Author(s)
Saralees Nadarajah
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658
Examples
x=runif(10,min=0,max=1)
dschabe(x)
pschabe(x)
varschabe(x)
esschabe(x)