perks {VaRES}R Documentation

Perks distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Perks distribution due to Perks (1932) given by

\begin{array}{ll} &\displaystyle f(x) = \frac {\displaystyle a \exp (b x) \left[ 1 + a \right]} {\displaystyle \left[ 1 + a \exp (b x) \right]^2}, \\ &\displaystyle F (x) = 1 - \frac {\displaystyle 1 + a} {\displaystyle 1 + a \exp (b x)}, \\ &\displaystyle {\rm VaR}_p (X) = \frac {1}{b} \log \frac {a + p}{a (1 - p)}, \\ &\displaystyle {\rm ES}_p (X) = -\left( 1 + \frac {a}{p} \right) \frac {\log a}{b} +\frac {(a + p) \log (a +p)}{b p} + \frac {(1 - p) \log (1 - p)}{b p} \end{array}

for x > 0, 0 < p < 1, a > 0, the first scale parameter and b > 0, the second scale parameter.

Usage

dperks(x, a=1, b=1, log=FALSE)
pperks(x, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
varperks(p, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
esperks(p, a=1, b=1)

Arguments

x

scaler or vector of values at which the pdf or cdf needs to be computed

p

scaler or vector of values at which the value at risk or expected shortfall needs to be computed

a

the value of the first scale parameter, must be positive, the default is 1

b

the value of the second scale parameter, must be positive, the default is 1

log

if TRUE then log(pdf) are returned

log.p

if TRUE then log(cdf) are returned and quantiles are computed for exp(p)

lower.tail

if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

x=runif(10,min=0,max=1)
dperks(x)
pperks(x)
varperks(x)
esperks(x)

[Package VaRES version 1.0.2 Index]