pareto {VaRES} | R Documentation |
Pareto distribution
Description
Computes the pdf, cdf, value at risk and expected shortfall for the Pareto distribution due to Pareto (1964) given by
\begin{array}{ll}
&\displaystyle
f (x) = c K^c x^{-c - 1},
\\
&\displaystyle
F (x) = 1 - \left( \frac {K}{x} \right)^c,
\\
&\displaystyle
{\rm VaR}_p (X) = K (1 - p)^{-1 / c},
\\
&\displaystyle
{\rm ES}_p (X) = \frac {K c}{p (1 - c)} (1 - p)^{1 - 1 / c} - \frac {K c}{p (1 - c)}
\end{array}
for x \geq K
, 0 < p < 1
, K > 0
, the scale parameter, and c > 0
, the shape parameter.
Usage
dpareto(x, K=1, c=1, log=FALSE)
ppareto(x, K=1, c=1, log.p=FALSE, lower.tail=TRUE)
varpareto(p, K=1, c=1, log.p=FALSE, lower.tail=TRUE)
espareto(p, K=1, c=1)
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed |
p |
scaler or vector of values at which the value at risk or expected shortfall needs to be computed |
K |
the value of the scale parameter, must be positive, the default is 1 |
c |
the value of the shape parameter, must be positive, the default is 1 |
log |
if TRUE then log(pdf) are returned |
log.p |
if TRUE then log(cdf) are returned and quantiles are computed for exp(p) |
lower.tail |
if FALSE then 1-cdf are returned and quantiles are computed for 1-p |
Value
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
Author(s)
Saralees Nadarajah
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658
Examples
x=runif(10,min=0,max=1)
dpareto(x)
ppareto(x)
varpareto(x)
espareto(x)