moweibull {VaRES}R Documentation

Marshall-Olkin Weibull distribution

Description

Computes the pdf, cdf, value at risk and expected shortfall for the Marshall-Olkin Weibull distribution due to Marshall and Olkin (1997) given by

f(x)=bλbxb1exp[(λx)b]{exp[(λx)b]1+a}2,F(x)=exp[(λx)b]2+aexp[(λx)b]1+a,VaRp(X)=1λ[log(11p+1a)]1/b,ESp(X)=1λp0p[log(11v+1a)]1/bdv\begin{array}{ll} &\displaystyle f(x) = b \lambda^b x^{b - 1} \exp \left[ (\lambda x)^b \right] \left\{ \exp \left[ (\lambda x)^b \right] - 1 + a \right\}^{-2}, \\ &\displaystyle F(x) = \frac {\displaystyle \exp \left[ (\lambda x)^b \right] - 2 + a} {\displaystyle \exp \left[ (\lambda x)^b \right] - 1 + a}, \\ &\displaystyle {\rm VaR}_p (X) = \frac {1}{\lambda} \left[ \log \left( \frac {1}{1 - p} + 1 - a \right) \right]^{1 / b}, \\ &\displaystyle {\rm ES}_p (X) = \frac {1}{\lambda p} \int_0^p \left[ \log \left( \frac {1}{1 - v} + 1 - a \right) \right]^{1 / b} dv \end{array}

for x>0x > 0, 0<p<10 < p < 1, a>0a > 0, the first scale parameter, b>0b > 0, the shape parameter, and λ>0\lambda > 0, the second scale parameter.

Usage

dmoweibull(x, a=1, b=1, lambda=1, log=FALSE)
pmoweibull(x, a=1, b=1, lambda=1, log.p=FALSE, lower.tail=TRUE)
varmoweibull(p, a=1, b=1, lambda=1, log.p=FALSE, lower.tail=TRUE)
esmoweibull(p, a=1, b=1, lambda=1)

Arguments

x

scaler or vector of values at which the pdf or cdf needs to be computed

p

scaler or vector of values at which the value at risk or expected shortfall needs to be computed

a

the value of the first scale parameter, must be positive, the default is 1

lambda

the value of the second scale parameter, must be positive, the default is 1

b

the value of the shape parameter, must be positive, the default is 1

log

if TRUE then log(pdf) are returned

log.p

if TRUE then log(cdf) are returned and quantiles are computed for exp(p)

lower.tail

if FALSE then 1-cdf are returned and quantiles are computed for 1-p

Value

An object of the same length as x, giving the pdf or cdf values computed at x or an object of the same length as p, giving the values at risk or expected shortfall computed at p.

Author(s)

Saralees Nadarajah

References

Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658

Examples

x=runif(10,min=0,max=1)
dmoweibull(x)
pmoweibull(x)
varmoweibull(x)
esmoweibull(x)

[Package VaRES version 1.0.2 Index]