loglog {VaRES} | R Documentation |
Loglog distribution
Description
Computes the pdf, cdf, value at risk and expected shortfall for the Loglog distribution due to Pham (2002) given by
\begin{array}{ll}
&\displaystyle
f(x) = a \log (\lambda) x^{a - 1}
\lambda^{x^a} \exp \left[ 1 - \lambda^{x^a} \right],
\\
&\displaystyle
F (x) = 1 - \exp \left[ 1 - \lambda^{x^a} \right],
\\
&\displaystyle
{\rm VaR}_p (X) = \left\{ \frac {\log \left[ 1 - \log (1 - p) \right]}{\log \lambda} \right\}^{1/a},
\\
&\displaystyle
{\rm ES}_p (X) = \frac {1}{p (\log \lambda)^{1/a}}
\int_0^p \left\{ \log \left[ 1 - \log (1 - v) \right] \right\}^{1/a} dv
\end{array}
for x > 0
, 0 < p < 1
, a > 0
, the shape parameter, and \lambda > 1
, the scale parameter.
Usage
dloglog(x, a=1, lambda=2, log=FALSE)
ploglog(x, a=1, lambda=2, log.p=FALSE, lower.tail=TRUE)
varloglog(p, a=1, lambda=2, log.p=FALSE, lower.tail=TRUE)
esloglog(p, a=1, lambda=2)
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed |
p |
scaler or vector of values at which the value at risk or expected shortfall needs to be computed |
lambda |
the value of the scale parameter, must be greater than 1, the default is 2 |
a |
the value of the shape parameter, must be positive, the default is 1 |
log |
if TRUE then log(pdf) are returned |
log.p |
if TRUE then log(cdf) are returned and quantiles are computed for exp(p) |
lower.tail |
if FALSE then 1-cdf are returned and quantiles are computed for 1-p |
Value
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
Author(s)
Saralees Nadarajah
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658
Examples
x=runif(10,min=0,max=1)
dloglog(x)
ploglog(x)
varloglog(x)
esloglog(x)