logisrayleigh {VaRES} | R Documentation |
Logistic Rayleigh distribution
Description
Computes the pdf, cdf, value at risk and expected shortfall for the logistic Rayleigh distribution due to Lan and Leemis (2008) given by
\begin{array}{ll}
&\displaystyle
f(x) = a \lambda x \exp \left( \lambda x^2 / 2 \right)
\left[ \exp \left( \lambda x^2 / 2 \right) - 1 \right]^{a - 1}
\left\{ 1 + \left[ \exp \left( \lambda x^2 / 2 \right) - 1 \right]^a \right\}^{-2},
\\
&\displaystyle
F(x) = \frac {\left[ \exp \left( \lambda x^2 / 2 \right) - 1 \right]^a}
{1 + \left[ \exp \left( \lambda x^2 / 2 \right) - 1 \right]^a},
\\
&\displaystyle
{\rm VaR}_p (X) = \sqrt{\frac {2}{\lambda}}
\sqrt{\log \left[ 1 + \left( \frac {p}{1 - p} \right)^{1 / a} \right]},
\\
&\displaystyle
{\rm ES}_p (X) = \frac {\sqrt{2}}{p \sqrt{\lambda}}
\int_0^p \left\{ \log \left[ 1 + \left( \frac {v}{1 - v} \right)^{1 / a} \right] \right\}^{1/2} dv
\end{array}
for x > 0
, 0 < p < 1
, a > 0
, the shape parameter, and \lambda > 0
, the scale parameter.
Usage
dlogisrayleigh(x, a=1, lambda=1, log=FALSE)
plogisrayleigh(x, a=1, lambda=1, log.p=FALSE, lower.tail=TRUE)
varlogisrayleigh(p, a=1, lambda=1, log.p=FALSE, lower.tail=TRUE)
eslogisrayleigh(p, a=1, lambda=1)
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed |
p |
scaler or vector of values at which the value at risk or expected shortfall needs to be computed |
lambda |
the value of the scale parameter, must be positive, the default is 1 |
a |
the value of the shape parameter, must be positive, the default is 1 |
log |
if TRUE then log(pdf) are returned |
log.p |
if TRUE then log(cdf) are returned and quantiles are computed for exp(p) |
lower.tail |
if FALSE then 1-cdf are returned and quantiles are computed for 1-p |
Value
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
Author(s)
Saralees Nadarajah
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658
Examples
x=runif(10,min=0,max=1)
dlogisrayleigh(x)
plogisrayleigh(x)
varlogisrayleigh(x)
eslogisrayleigh(x)