loggamma {VaRES} | R Documentation |
Log gamma distribution
Description
Computes the pdf, cdf, value at risk and expected shortfall for the log gamma distribution due to Consul and Jain (1971) given by
\begin{array}{ll}
&\displaystyle
f (x) = \frac {a^r x^{a - 1} (-\log x)^{r - 1}}{\Gamma (r)},
\\
&\displaystyle
F (x) = Q (r, -a \log x),
\\
&\displaystyle
{\rm VaR}_p (X) = \exp \left[ -\frac {1}{a} Q^{-1} (r, p) \right],
\\
&\displaystyle
{\rm ES}_p (X) = \frac {1}{p} \int_0^p \exp
\left[ -\frac {1}{a} Q^{-1} (r, v) \right] dv
\end{array}
for x > 0
, 0 < p < 1
, a > 0
, the first shape parameter, and r > 0
, the second shape parameter.
Usage
dloggamma(x, a=1, r=1, log=FALSE)
ploggamma(x, a=1, r=1, log.p=FALSE, lower.tail=TRUE)
varloggamma(p, a=1, r=1, log.p=FALSE, lower.tail=TRUE)
esloggamma(p, a=1, r=1)
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed |
p |
scaler or vector of values at which the value at risk or expected shortfall needs to be computed |
a |
the value of the first scale parameter, must be positive, the default is 1 |
r |
the value of the second scale parameter, must be positive, the default is 1 |
log |
if TRUE then log(pdf) are returned |
log.p |
if TRUE then log(cdf) are returned and quantiles are computed for exp(p) |
lower.tail |
if FALSE then 1-cdf are returned and quantiles are computed for 1-p |
Value
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
Author(s)
Saralees Nadarajah
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658
Examples
x=runif(10,min=0,max=1)
dloggamma(x)
ploggamma(x)
varloggamma(x)
esloggamma(x)