kumgamma {VaRES} | R Documentation |
Kumaraswamy gamma distribution
Description
Computes the pdf, cdf, value at risk and expected shortfall for the Kumaraswamy gamma distribution due to de Pascoa et al. (2011) given by
\begin{array}{ll}
&\displaystyle
f (x) = c d b^a x^{a - 1} \exp (-b x)
\frac {\gamma^{c - 1} (a, b x)}{\Gamma^c (a)}
\left[ 1 - \frac {\gamma^c (a, b x)}{\Gamma^c (a)} \right]^{d - 1},
\\
&\displaystyle
F (x) = 1 - \left[ 1 - \frac {\gamma^c (a, b x)}{\Gamma^c (a)} \right]^d,
\\
&\displaystyle
{\rm VaR}_p (X) =
\frac {1}{b} Q^{-1} \left( a, 1 - \left[ 1 - (1 - p)^{1 / d} \right]^{1 / c} \right),
\\
&\displaystyle
{\rm ES}_p (X) = \frac {1}{b p} \int_0^p Q^{-1} \left( a, 1 - \left[ 1 - (1 - v)^{1 / d} \right]^{1 / c} \right) dv
\end{array}
for x > 0
, 0 < p < 1
, a > 0
, the first shape parameter, b > 0
, the scale parameter,
c > 0
, the second shape parameter, and d > 0
, the third shape parameter.
Usage
dkumgamma(x, a=1, b=1, c=1, d=1, log=FALSE)
pkumgamma(x, a=1, b=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE)
varkumgamma(p, a=1, b=1, c=1, d=1, log.p=FALSE, lower.tail=TRUE)
eskumgamma(p, a=1, b=1, c=1, d=1)
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed |
p |
scaler or vector of values at which the value at risk or expected shortfall needs to be computed |
b |
the value of the scale parameter, must be positive, the default is 1 |
a |
the value of the first shape parameter, must be positive, the default is 1 |
c |
the value of the second shape parameter, must be positive, the default is 1 |
d |
the value of the third shape parameter, must be positive, the default is 1 |
log |
if TRUE then log(pdf) are returned |
log.p |
if TRUE then log(cdf) are returned and quantiles are computed for exp(p) |
lower.tail |
if FALSE then 1-cdf are returned and quantiles are computed for 1-p |
Value
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
Author(s)
Saralees Nadarajah
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658
Examples
x=runif(10,min=0,max=1)
dkumgamma(x)
pkumgamma(x)
varkumgamma(x)
eskumgamma(x)