halfT {VaRES} | R Documentation |
Half Student's t distribution
Description
Computes the pdf, cdf, value at risk and expected shortfall for the half Student's t
distribution given by
\begin{array}{ll}
&\displaystyle
f (x) = \frac {2 \Gamma \left( \frac {n + 1}{2} \right)}{\sqrt{n \pi} \Gamma \left( \frac {n}{2} \right)}
\left( 1 + \frac {x^2}{n} \right)^{-\frac {n + 1}{2}},
\\
&\displaystyle
F (x) = I_{\frac {x^2}{x^2 + n}} \left( \frac {1}{2}, \frac {n}{2} \right),
\\
&\displaystyle
{\rm VaR}_p (X) = \sqrt{\frac {n I_p^{-1} \left( \frac {1}{2}, \frac {n}{2} \right)}
{1 - I_p^{-1} \left( \frac {1}{2}, \frac {n}{2} \right)}},
\\
&\displaystyle
{\rm ES}_p (X) = \frac {\sqrt{n}}{p} \int_0^p
\sqrt{\frac {I_v^{-1} \left( \frac {1}{2}, \frac {n}{2} \right)}
{1 - I_v^{-1} \left( \frac {1}{2}, \frac {n}{2} \right)}} dv
\end{array}
for -\infty < x < \infty
, 0 < p < 1
, and n > 0
, the degree of freedom parameter.
Usage
dhalfT(x, n=1, log=FALSE)
phalfT(x, n=1, log.p=FALSE, lower.tail=TRUE)
varhalfT(p, n=1, log.p=FALSE, lower.tail=TRUE)
eshalfT(p, n=1)
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed |
p |
scaler or vector of values at which the value at risk or expected shortfall needs to be computed |
n |
the value of the degree of freedom parameter, must be positive, the default is 1 |
log |
if TRUE then log(pdf) are returned |
log.p |
if TRUE then log(cdf) are returned and quantiles are computed for exp(p) |
lower.tail |
if FALSE then 1-cdf are returned and quantiles are computed for 1-p |
Value
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
Author(s)
Saralees Nadarajah
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658
Examples
x=runif(10,min=0,max=1)
dhalfT(x)
phalfT(x)
varhalfT(x)
eshalfT(x)