gompertz {VaRES} | R Documentation |
Gompertz distribution
Description
Computes the pdf, cdf, value at risk and expected shortfall for the Gompertz distribution due to Gompertz (1825) given by
\begin{array}{ll}
&\displaystyle
f(x) = b \eta \exp (bx) \exp \left[ \eta - \eta \exp (bx) \right],
\\
&\displaystyle
F (x) = 1 - \exp \left[ \eta - \eta \exp (bx) \right],
\\
&\displaystyle
{\rm VaR}_p (X) = \frac {1}{b} \log \left[ 1 - \frac {1}{\eta} \log (1 - p) \right],
\\
&\displaystyle
{\rm ES}_p (X) = \frac {1}{p b} \int_0^p \log \left[ 1 - \frac {1}{\eta} \log (1 - v) \right] dv
\end{array}
for x > 0
, 0 < p < 1
, b > 0
, the first scale parameter and \eta > 0
, the second scale parameter.
Usage
dgompertz(x, b=1, eta=1, log=FALSE)
pgompertz(x, b=1, eta=1, log.p=FALSE, lower.tail=TRUE)
vargompertz(p, b=1, eta=1, log.p=FALSE, lower.tail=TRUE)
esgompertz(p, b=1, eta=1)
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed |
p |
scaler or vector of values at which the value at risk or expected shortfall needs to be computed |
b |
the value of the first scale parameter, must be positive, the default is 1 |
eta |
the value of the second scale parameter, must be positive, the default is 1 |
log |
if TRUE then log(pdf) are returned |
log.p |
if TRUE then log(cdf) are returned and quantiles are computed for exp(p) |
lower.tail |
if FALSE then 1-cdf are returned and quantiles are computed for 1-p |
Value
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
Author(s)
Saralees Nadarajah
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658
Examples
x=runif(10,min=0,max=1)
dgompertz(x)
pgompertz(x)
vargompertz(x)
esgompertz(x)