burr7 {VaRES} | R Documentation |
Burr XII distribution
Description
Computes the pdf, cdf, value at risk and expected shortfall for the Burr XII distribution due to Burr (1942) given by
\begin{array}{ll}
&\displaystyle
f (x) = \frac {k c x^{c - 1}}{\left( 1 + x^c \right)^{k + 1}},
\\
&\displaystyle
F (x) = 1 - \left( 1 + x^c \right)^{-k},
\\
&\displaystyle
{\rm VaR}_p (X) = \left[ (1 - p)^{-1 / k} - 1 \right]^{1/c},
\\
&\displaystyle
{\rm ES}_p (X) = \frac {1}{p} \int_0^p \left[ (1 - v)^{-1 / k} - 1 \right]^{1/c} dv
\end{array}
for x > 0
, 0 < p < 1
, c > 0
, the first shape parameter, and k > 0
, the second shape parameter.
Usage
dburr7(x, k=1, c=1, log=FALSE)
pburr7(x, k=1, c=1, log.p=FALSE, lower.tail=TRUE)
varburr7(p, k=1, c=1, log.p=FALSE, lower.tail=TRUE)
esburr7(p, k=1, c=1)
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed |
p |
scaler or vector of values at which the value at risk or expected shortfall needs to be computed |
k |
the value of the first shape parameter, must be positive, the default is 1 |
c |
the value of the second shape parameter, must be positive, the default is 1 |
log |
if TRUE then log(pdf) are returned |
log.p |
if TRUE then log(cdf) are returned and quantiles are computed for exp(p) |
lower.tail |
if FALSE then 1-cdf are returned and quantiles are computed for 1-p |
Value
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
Author(s)
Saralees Nadarajah
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658
Examples
x=runif(10,min=0,max=1)
dburr7(x)
pburr7(x)
varburr7(x)
esburr7(x)