burr {VaRES} | R Documentation |
Burr distribution
Description
Computes the pdf, cdf, value at risk and expected shortfall for the Burr distribution due to Burr (1942) given by
\begin{array}{ll}
&\displaystyle
f (x) = \frac {b a^b}{x^{b + 1}} \left[ 1 + \left( x / a \right)^{-b} \right]^{-2},
\\
&\displaystyle
F (x) = \frac {1}{1 + \left( x / a \right)^{-b}},
\\
&\displaystyle
{\rm VaR}_p (X) = a p^{1 / b} (1 - p)^{-1 / b},
\\
&\displaystyle
{\rm ES}_p (X) = \frac {a}{p} B_p \left( 1 / b + 1, 1 - 1 / b \right)
\end{array}
for x > 0
, 0 < p < 1
, a > 0
, the scale parameter, and b > 0
, the shape parameter,
where B_x (a, b) = \int_0^x t^{a - 1} (1 - t)^{b - 1} dt
denotes the incomplete beta function.
Usage
dburr(x, a=1, b=1, log=FALSE)
pburr(x, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
varburr(p, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
esburr(p, a=1, b=1)
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed |
p |
scaler or vector of values at which the value at risk or expected shortfall needs to be computed |
a |
the value of the scale parameter, must be positive, the default is 1 |
b |
the value of the shape parameter, must be positive, the default is 1 |
log |
if TRUE then log(pdf) are returned |
log.p |
if TRUE then log(cdf) are returned and quantiles are computed for exp(p) |
lower.tail |
if FALSE then 1-cdf are returned and quantiles are computed for 1-p |
Value
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
Author(s)
Saralees Nadarajah
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658
Examples
x=runif(10,min=0,max=1)
dburr(x)
pburr(x)
varburr(x)
esburr(x)