betaweibull {VaRES} | R Documentation |
Beta Weibull distribution
Description
Computes the pdf, cdf, value at risk and expected shortfall for the beta Weibull distribution due to Cordeiro et al. (2012b) given by
\begin{array}{ll}
&\displaystyle
f(x) = \frac {\alpha x^{\alpha - 1}}{\sigma^\alpha B (a, b)}
\exp \left\{ -b \left( \frac {x}{\sigma} \right)^{\alpha} \right\}
\left[ 1 - \exp \left\{ -\left( \frac {x}{\sigma} \right)^{\alpha} \right\} \right]^{a - 1},
\\
&\displaystyle
F(x) = I_{1 - \exp \left\{ -\left( \frac {x}{\sigma} \right)^{\alpha} \right\}} (a, b),
\\
&\displaystyle
{\rm VaR}_p (X) = \sigma \left\{ -\log \left[ 1 - I_p^{-1} (a, b) \right] \right\}^{1 / \alpha},
\\
&\displaystyle
{\rm ES}_p (X) = \frac {\sigma}{p} \int_0^p \left\{ -\log \left[ 1 - I_v^{-1} (a, b) \right] \right\}^{1 / \alpha} dv
\end{array}
for x > 0
, 0 < p < 1
, a > 0
, the first shape parameter,
b > 0
, the second shape parameter, \alpha > 0
, the third shape parameter, and \sigma > 0
, the scale parameter.
Usage
dbetaweibull(x, a=1, b=1, alpha=1, sigma=1, log=FALSE)
pbetaweibull(x, a=1, b=1, alpha=1, sigma=1, log.p=FALSE, lower.tail=TRUE)
varbetaweibull(p, a=1, b=1, alpha=1, sigma=1, log.p=FALSE, lower.tail=TRUE)
esbetaweibull(p, a=1, b=1, alpha=1, sigma=1)
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed |
p |
scaler or vector of values at which the value at risk or expected shortfall needs to be computed |
sigma |
the value of the scale parameter, must be positive, the default is 1 |
a |
the value of the first shape parameter, must be positive, the default is 1 |
b |
the value of the second shape parameter, must be positive, the default is 1 |
alpha |
the value of the third shape parameter, must be positive, the default is 1 |
log |
if TRUE then log(pdf) are returned |
log.p |
if TRUE then log(cdf) are returned and quantiles are computed for exp(p) |
lower.tail |
if FALSE then 1-cdf are returned and quantiles are computed for 1-p |
Value
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
Author(s)
Saralees Nadarajah
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658
Examples
x=runif(10,min=0,max=1)
dbetaweibull(x)
pbetaweibull(x)
varbetaweibull(x)
esbetaweibull(x)