betanorm {VaRES} | R Documentation |
Beta normal distribution
Description
Computes the pdf, cdf, value at risk and expected shortfall for the beta normal distribution due to Eugene et al. (2002) given by
\begin{array}{ll}
&\displaystyle
f (x) = \frac {1}{\sigma B (a, b)}
\phi \left( \frac {x - \mu}{\sigma} \right)
\Phi^{a - 1} \left( \frac {x - \mu}{\sigma} \right) \Phi^{b - 1} \left( \frac {\mu - x}{\sigma} \right),
\\
&\displaystyle
F (x) = I_{\Phi \left( \frac {x - \mu}{\sigma} \right)} (a, b),
\\
&\displaystyle
{\rm VaR}_p (X) = \mu + \sigma \Phi^{-1} \left( I_p^{-1} (a, b) \right),
\\
&\displaystyle
{\rm ES}_p (X) = \mu + \frac {\sigma}{p} \int_0^p \Phi^{-1} \left( I_v^{-1} (a, b) \right) dv
\end{array}
for -\infty < x < \infty
, 0 < p < 1
, -\infty < \mu < \infty
, the location parameter,
\sigma > 0
, the scale parameter, a > 0
, the first shape parameter, and b > 0
, the second shape parameter.
Usage
dbetanorm(x, mu=0, sigma=1, a=1, b=1, log=FALSE)
pbetanorm(x, mu=0, sigma=1, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
varbetanorm(p, mu=0, sigma=1, a=1, b=1, log.p=FALSE, lower.tail=TRUE)
esbetanorm(p, mu=0, sigma=1, a=1, b=1)
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed |
p |
scaler or vector of values at which the value at risk or expected shortfall needs to be computed |
mu |
the value of the location parameter, can take any real value, the default is zero |
sigma |
the value of the scale parameter, must be positive, the default is 1 |
a |
the value of the first shape parameter, must be positive, the default is 1 |
b |
the value of the second shape parameter, must be positive, the default is 1 |
log |
if TRUE then log(pdf) are returned |
log.p |
if TRUE then log(cdf) are returned and quantiles are computed for exp(p) |
lower.tail |
if FALSE then 1-cdf are returned and quantiles are computed for 1-p |
Value
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
Author(s)
Saralees Nadarajah
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658
Examples
x=runif(10,min=0,max=1)
dbetanorm(x)
pbetanorm(x)
varbetanorm(x)
esbetanorm(x)