betagumbel {VaRES} | R Documentation |
Beta Gumbel distribution
Description
Computes the pdf, cdf, value at risk and expected shortfall for the beta Gumbel distribution due to Nadarajah and Kotz (2004) given by
\begin{array}{ll}
&\displaystyle
f (x) = \frac {1}{\sigma B (a, b)}
\exp \left( \frac {\mu - x}{\sigma} \right)
\exp \left[ -a \exp \frac {\mu - x}{\sigma} \right]
\left\{ 1 - \exp \left[ -\exp \frac {\mu - x}{\sigma} \right] \right\}^{b - 1},
\\
&\displaystyle
F (x) = I_{\exp \left[ -\exp \frac {\mu - x}{\sigma} \right]} (a, b),
\\
&\displaystyle
{\rm VaR}_p (X) = \mu - \sigma \log \left[ -\log I_p^{-1} (a, b) \right],
\\
&\displaystyle
{\rm ES}_p (X) = \mu - \frac {\sigma}{p} \int_0^p \log \left[ -\log I_v^{-1} (a, b) \right] dv
\end{array}
for -\infty < x < \infty
, 0 < p < 1
, -\infty < \mu < \infty
, the location parameter, \sigma > 0
, the scale parameter,
a > 0
, the first shape parameter, and b > 0
, the second shape parameter.
Usage
dbetagumbel(x, a=1, b=1, mu=0, sigma=1, log=FALSE)
pbetagumbel(x, a=1, b=1, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
varbetagumbel(p, a=1, b=1, mu=0, sigma=1, log.p=FALSE, lower.tail=TRUE)
esbetagumbel(p, a=1, b=1, mu=0, sigma=1)
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed |
p |
scaler or vector of values at which the value at risk or expected shortfall needs to be computed |
mu |
the value of the location parameter, can take any real value, the default is zero |
sigma |
the value of the scale parameter, must be positive, the default is 1 |
a |
the value of the first shape parameter, must be positive, the default is 1 |
b |
the value of the second shape parameter, must be positive, the default is 1 |
log |
if TRUE then log(pdf) are returned |
log.p |
if TRUE then log(cdf) are returned and quantiles are computed for exp(p) |
lower.tail |
if FALSE then 1-cdf are returned and quantiles are computed for 1-p |
Value
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
Author(s)
Saralees Nadarajah
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658
Examples
x=runif(10,min=0,max=1)
dbetagumbel(x)
pbetagumbel(x)
varbetagumbel(x)
esbetagumbel(x)