aep {VaRES} | R Documentation |
Asymmetric exponential power distribution
Description
Computes the pdf, cdf, value at risk and expected shortfall for the asymmetric exponential power distribution due to Zhu and Zinde-Walsh (2009) given by
\begin{array}{ll}
&\displaystyle
f (x) = \left\{ \begin{array}{ll}
\displaystyle
\frac {\alpha}{\alpha^{*}} K \left( q_1 \right) \exp \left[ -\frac {1}{q_1} \left | \frac {x}{2 \alpha^{*}} \right |^{q_1} \right], & \mbox{if $x \leq 0$,}
\\
\\
\displaystyle
\frac {1 - \alpha}{1 - \alpha^{*}} K \left( q_2 \right) \exp \left[ -\frac {1}{q_2} \left | \frac {x}{2 - 2 \alpha^{*}} \right |^{q_2} \right], & \mbox{if $x > 0$,}
\end{array}
\right.
\\
&\displaystyle
F (x) = \left\{ \begin{array}{ll}
\displaystyle
\alpha Q \left( \frac {1}{q_1} \left( \frac {\mid x \mid}{2 \alpha^{*}} \right)^{q_1}, \frac {1}{q_1} \right), & \mbox{if $x \leq 0$,}
\\
\\
\displaystyle
1 - (1 - \alpha) Q \left( \frac {1}{q_2} \left( \frac {\mid x \mid}{2 - 2 \alpha^{*}} \right)^{q_2}, \frac {1}{q_2} \right), & \mbox{if $x > 0$,}
\end{array}
\right.
\\
&\displaystyle
{\rm VaR}_p (X) = \left\{ \begin{array}{ll}
\displaystyle
-2 \alpha^{*} \left[ q_1 Q^{-1} \left( \frac {p}{\alpha}, \frac {1}{q_1} \right) \right]^{\frac {1}{q_1}}, & \mbox{if $p \leq \alpha$,}
\\
\\
\displaystyle
2 \left(1 - \alpha^{*}\right) \left[ q_2 Q^{-1} \left( \frac {1 - p}{1 - \alpha}, \frac {1}{q_2} \right) \right]^{\frac {1}{q_2}}, & \mbox{if $p > \alpha$,}
\end{array}
\right.
\\
&\displaystyle
{\rm ES}_p (X) = \left\{ \begin{array}{ll}
\displaystyle
-\frac {2 \alpha^{*}}{p} \int_0^p \left[ q_1 Q^{-1} \left( \frac {v}{\alpha}, \frac {1}{q_1} \right) \right]^{\frac {1}{q_1}} dv, & \mbox{if $p \leq \alpha$,}
\\
\\
\displaystyle
-\frac {2 \alpha^{*}}{p} \int_0^\alpha \left[ q_1 Q^{-1} \left( \frac {v}{\alpha}, \frac {1}{q_1} \right) \right]^{\frac {1}{q_1}} dv & \
\\
\quad
\displaystyle
+\frac {2 \left(1 - \alpha^{*}\right)}{p} \int_\alpha^p \left[ q_2 Q^{-1} \left( \frac {1 - v}{1 - \alpha}, \frac {1}{q_2} \right) \right]^{\frac {1}{q_2}} dv, & \mbox{if $p > \alpha$}
\end{array}
\right.
\end{array}
for -\infty < x < \infty
, 0 < p < 1
, 0 < \alpha < 1
, the scale parameter, q_1 > 0
, the first shape parameter, and q_2 > 0
, the second shape parameter, where \alpha^{*} = \alpha K \left( q_1 \right) / \left\{ \alpha K \left( q_1 \right) + (1 - \alpha) K \left( q_2 \right) \right\}
, K (q) = \frac {1}{2 q^{1/q} \Gamma (1 + 1/q)}
, Q (a, x) = \int_x^\infty t^{a - 1} \exp \left( -t \right) dt / \Gamma (a)
denotes the regularized complementary incomplete gamma function, \Gamma (a) = \int_0^\infty t^{a - 1} \exp \left( -t \right) dt
denotes the gamma function, and Q^{-1} (a, x)
denotes the inverse of Q (a, x)
.
Usage
daep(x, q1=1, q2=1, alpha=0.5, log=FALSE)
paep(x, q1=1, q2=1, alpha=0.5, log.p=FALSE, lower.tail=TRUE)
varaep(p, q1=1, q2=1, alpha=0.5, log.p=FALSE, lower.tail=TRUE)
esaep(p, q1=1, q2=1, alpha=0.5)
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed |
p |
scaler or vector of values at which the value at risk or expected shortfall needs to be computed |
alpha |
the value of the scale parameter, must be in the unit interval, the default is 0.5 |
q1 |
the value of the first shape parameter, must be positive, the default is 1 |
q2 |
the value of the second shape parameter, must be positive, the default is 1 |
log |
if TRUE then log(pdf) are returned |
log.p |
if TRUE then log(cdf) are returned and quantiles are computed for exp(p) |
lower.tail |
if FALSE then 1-cdf are returned and quantiles are computed for 1-p |
Value
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
Author(s)
Saralees Nadarajah
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658
Examples
x=runif(10,min=0,max=1)
daep(x)
paep(x)
varaep(x)
esaep(x)