Hlogis {VaRES} | R Documentation |
Hosking logistic distribution
Description
Computes the pdf, cdf, value at risk and expected shortfall for the Hosking logistic distribution due to Hosking (1989, 1990) given by
\begin{array}{ll}
&\displaystyle
f (x) = \frac {(1 - k x)^{1 / k - 1}}{\left[ 1 + (1 - k x)^{1 / k} \right]^2},
\\
&\displaystyle
F (x) = \frac {1}{1 + (1 - k x)^{1 / k}},
\\
&\displaystyle
{\rm VaR}_p (X) = \frac {1}{k} \left[ 1 - \left( \frac {1 - p}{p} \right)^k \right],
\\
&\displaystyle
{\rm ES}_p (X) = \frac {1}{k} - \frac {1}{kp} B_p (1 - k, 1 + k)
\end{array}
for x < 1/k
if k > 0
, x > 1/k
if k < 0
, -\infty < x < \infty
if k = 0
,
and -\infty < k < \infty
, the shape parameter.
Usage
dHlogis(x, k=1, log=FALSE)
pHlogis(x, k=1, log.p=FALSE, lower.tail=TRUE)
varHlogis(p, k=1, log.p=FALSE, lower.tail=TRUE)
esHlogis(p, k=1)
Arguments
x |
scaler or vector of values at which the pdf or cdf needs to be computed |
p |
scaler or vector of values at which the value at risk or expected shortfall needs to be computed |
k |
the value of the shape parameter, must be positive, the default is 1 |
log |
if TRUE then log(pdf) are returned |
log.p |
if TRUE then log(cdf) are returned and quantiles are computed for exp(p) |
lower.tail |
if FALSE then 1-cdf are returned and quantiles are computed for 1-p |
Value
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
Author(s)
Saralees Nadarajah
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658
Examples
x=runif(10,min=0,max=1)
dHlogis(x)
pHlogis(x)
varHlogis(x)
esHlogis(x)