FR {VaRES} | R Documentation |
Freimer distribution
Description
Computes the pdf, cdf, value at risk and expected shortfall for the Freimer distribution due to Freimer et al. (1988) given by
\begin{array}{ll}
&\displaystyle
{\rm VaR}_p (X) = \frac {1}{a} \left[ \frac {p^b - 1}{b} -
\frac {(1 - p)^c - 1}{c} \right],
\\
&\displaystyle
{\rm ES}_p (X) = \frac {1}{a} \left( \frac {1}{c} - \frac {1}{b} \right) +
\frac {p^b}{a b (b + 1)} + \frac {(1 - p)^{c + 1} - 1}{p a c (c + 1)}
\end{array}
for 0 < p < 1
, a > 0
, the scale parameter,
b > 0
, the first shape parameter, and c > 0
, the second shape parameter.
Usage
varFR(p, a=1, b=1, c=1, log.p=FALSE, lower.tail=TRUE)
esFR(p, a=1, b=1, c=1)
Arguments
p |
scaler or vector of values at which the value at risk or expected shortfall needs to be computed |
a |
the value of the scale parameter, must be positive, the default is 1 |
b |
the value of the first shape parameter, must be positive, the default is 1 |
c |
the value of the second shape parameter, must be positive, the default is 1 |
log |
if TRUE then log(pdf) are returned |
log.p |
if TRUE then log(cdf) are returned and quantiles are computed for exp(p) |
lower.tail |
if FALSE then 1-cdf are returned and quantiles are computed for 1-p |
Value
An object of the same length as x
, giving the pdf or cdf values computed at x
or an object of the same length as p
, giving the values at risk or expected shortfall computed at p
.
Author(s)
Saralees Nadarajah
References
Stephen Chan, Saralees Nadarajah & Emmanuel Afuecheta (2016). An R Package for Value at Risk and Expected Shortfall, Communications in Statistics - Simulation and Computation, 45:9, 3416-3434, doi:10.1080/03610918.2014.944658
Examples
x=runif(10,min=0,max=1)
varFR(x)
esFR(x)