| tune {VSURF} | R Documentation |
Tuning of the thresholding and interpretation steps of VSURF
Description
This function allows to tune the "thresholding" and "interpretation step" of VSURF, without rerunning all computations.
Usage
tune(x, ...)
## S3 method for class 'VSURF_thres'
tune(x, nmin = 1, ...)
## S3 method for class 'VSURF_interp'
tune(x, nsd = 1, ...)
Arguments
x |
An object of class |
... |
Not used. |
nmin |
Number of times the "minimum value" is multiplied to set threshold value. See details below. |
nsd |
Number of times the standard deviation of the minimum value of
|
Details
In VSURF_thres function, the actual threshold is performed
like this: only variables with a mean VI larger than nmin *
min.thres are kept. The function tune.VSURF_thres allows you
to change the value of nmin (which multiply the estimated threshold
value min.thres), without rerunning all computations. To get a
softer threshold than default, choose a value of nmin less than 1,
and to get a harder one, choose a value larger than 1.
In VSURF_interp function, the smallest model (and hence its
corresponding variables) having a mean OOB error rate less than
err.min + nsd * sd.min is selected. The function
tune.VSURF_interp allows to change the value of nsd (which
multiply the standard deviation of the minimum OOB error rate
sd.min), without rerunning all computations. To get a larger model
than default, choose a value of nsd less than 1, and to get a smaller
one, choose a value larger than 1.
Value
An object with the same structure than the original output (from
VSURF_thres or VSURF_interp).
Author(s)
Robin Genuer, Jean-Michel Poggi and Christine Tuleau-Malot
References
Genuer, R. and Poggi, J.M. and Tuleau-Malot, C. (2010), Variable selection using random forests, Pattern Recognition Letters 31(14), 2225-2236
Genuer, R. and Poggi, J.M. and Tuleau-Malot, C. (2015), VSURF: An R Package for Variable Selection Using Random Forests, The R Journal 7(2):19-33
See Also
VSURF, VSURF_thres,
VSURF_interp
Examples
## Not run:
data(iris)
iris.thres <- VSURF_thres(iris[,1:4], iris[,5], ntree = 100, nfor.thres = 20)
iris.thres.tuned <- tune(iris.thres, nmin = 10)
iris.thres.tuned
iris.interp <- VSURF_interp(iris[,1:4], iris[,5], vars = iris.thres$varselect.thres,
nfor.interp = 10)
iris.interp.tuned <- tune(iris.interp, nsd = 10)
iris.interp.tuned
## End(Not run)