multipleVLTransferEntropy {VLTimeCausality} | R Documentation |
multipleVLTransferEntropy
Description
multipleVLTransferEntropy is a function that infers Variable-lag Transfer Entropy of all pairwises of m
time series TS[,1],...TS[,m]
.
Usage
multipleVLTransferEntropy(
TS,
maxLag,
nboot = 0,
lx = 1,
ly = 1,
VLflag = TRUE,
autoLagflag = TRUE,
alpha = 0.05
)
Arguments
TS |
is a numerical time series of effect where |
maxLag |
is a maximum possible time delay. The default is 0.2*length(Y). |
nboot |
is a number of times of bootstrapping for RTransferEntropy::transfer_entropy() function. |
lx , ly |
are lag parameters of RTransferEntropy::transfer_entropy(). |
VLflag |
is a flag of Granger causality choice: either |
autoLagflag |
is a flag for enabling the automatic lag inference function. The default is true. If it is set to be true, then maxLag is set automatically using cross-correlation. Otherwise, if it is set to be false, then the function takes the maxLag value to infer Granger causality. |
alpha |
is a significant-level threshold for TE bootstrapping by Dimpfl and Peter (2013). |
Value
This function returns of a list of an adjacency matrix of causality where adjMat[i,j]
is true if TS[,i]
causes TS[,j]
.
Examples
## Generate simulation data
#out1<-SimpleSimulationVLtimeseries()
#TS<-cbind(out1$X,out1$Y)
## Run the function
#out2<-multipleVLTransferEntropy(TS,maxLag=1)