Sinmad {VGAM} | R Documentation |
The Singh-Maddala Distribution
Description
Density, distribution function, quantile function and
random generation for the Singh-Maddala distribution with
shape parameters a
and q
, and scale parameter
scale
.
Usage
dsinmad(x, scale = 1, shape1.a, shape3.q, log = FALSE)
psinmad(q, scale = 1, shape1.a, shape3.q, lower.tail = TRUE, log.p = FALSE)
qsinmad(p, scale = 1, shape1.a, shape3.q, lower.tail = TRUE, log.p = FALSE)
rsinmad(n, scale = 1, shape1.a, shape3.q)
Arguments
x , q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations. If |
shape1.a , shape3.q |
shape parameters. |
scale |
scale parameter. |
log |
Logical.
If |
lower.tail , log.p |
Details
See sinmad
, which is the VGAM family function
for estimating the parameters by maximum likelihood estimation.
Value
dsinmad
gives the density,
psinmad
gives the distribution function,
qsinmad
gives the quantile function, and
rsinmad
generates random deviates.
Note
The Singh-Maddala distribution is a special case of the 4-parameter generalized beta II distribution.
Author(s)
T. W. Yee and Kai Huang
References
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
See Also
Examples
sdata <- data.frame(y = rsinmad(n = 3000, scale = exp(2),
shape1 = exp(1), shape3 = exp(1)))
fit <- vglm(y ~ 1, sinmad(lss = FALSE, ishape1.a = 2.1), data = sdata,
trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit)