| sinmad {VGAM} | R Documentation |
Singh-Maddala Distribution Family Function
Description
Maximum likelihood estimation of the 3-parameter Singh-Maddala distribution.
Usage
sinmad(lscale = "loglink", lshape1.a = "loglink", lshape3.q = "loglink",
iscale = NULL, ishape1.a = NULL, ishape3.q = NULL, imethod = 1,
lss = TRUE, gscale = exp(-5:5), gshape1.a = exp(-5:5),
gshape3.q = exp(-5:5), probs.y = c(0.25, 0.5, 0.75),
zero = "shape")
Arguments
lss |
See |
lshape1.a, lscale, lshape3.q |
Parameter link functions applied to the
(positive) parameters |
iscale, ishape1.a, ishape3.q, imethod, zero |
See |
gscale, gshape1.a, gshape3.q |
See |
probs.y |
See |
Details
The 3-parameter Singh-Maddala distribution is the 4-parameter
generalized beta II distribution with shape parameter p=1.
It is known under various other names, such as the Burr XII (or
just the Burr distribution), Pareto IV,
beta-P, and generalized log-logistic distribution.
More details can be found in Kleiber and Kotz (2003).
Some distributions which are special cases of the 3-parameter
Singh-Maddala are the Lomax (a=1), Fisk (q=1), and
paralogistic (a=q).
The Singh-Maddala distribution has density
f(y) = aq y^{a-1} / [b^a \{1 + (y/b)^a\}^{1+q}]
for a > 0, b > 0, q > 0, y \geq 0.
Here, b is the scale parameter scale,
and the others are shape parameters.
The cumulative distribution function is
F(y) = 1 - [1 + (y/b)^a]^{-q}.
The mean is
E(Y) = b \, \Gamma(1 + 1/a) \, \Gamma(q - 1/a) / \Gamma(q)
provided -a < 1 < aq; these are returned as the fitted values.
This family function handles multiple responses.
Value
An object of class "vglmff" (see
vglmff-class). The object
is used by modelling functions such as
vglm, and vgam.
Note
See the notes in genbetaII.
Author(s)
T. W. Yee
References
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
See Also
Sinmad,
genbetaII,
betaII,
dagum,
fisk,
inv.lomax,
lomax,
paralogistic,
inv.paralogistic,
simulate.vlm.
Examples
sdata <- data.frame(y = rsinmad(n = 1000, shape1 = exp(1),
scale = exp(2), shape3 = exp(0)))
fit <- vglm(y ~ 1, sinmad(lss = FALSE), sdata, trace = TRUE)
fit <- vglm(y ~ 1, sinmad(lss = FALSE, ishape1.a = exp(1)),
sdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)
# Harder problem (has the shape3.q parameter going to infinity)
set.seed(3)
sdata <- data.frame(y1 = rbeta(1000, 6, 6))
# hist(with(sdata, y1))
if (FALSE) {
# These struggle
fit1 <- vglm(y1 ~ 1, sinmad(lss = FALSE), sdata, trace = TRUE)
fit1 <- vglm(y1 ~ 1, sinmad(lss = FALSE), sdata, trace = TRUE,
crit = "coef")
Coef(fit1)
}
# Try this remedy:
fit2 <- vglm(y1 ~ 1, data = sdata, trace = TRUE, stepsize = 0.05, maxit = 99,
sinmad(lss = FALSE, ishape3.q = 3, lshape3.q = "logloglink"))
coef(fit2, matrix = TRUE)
Coef(fit2)