prentice74 {VGAM}R Documentation

Prentice (1974) Log-gamma Distribution

Description

Estimation of a 3-parameter log-gamma distribution described by Prentice (1974).

Usage

prentice74(llocation = "identitylink", lscale = "loglink",
           lshape = "identitylink", ilocation = NULL, iscale = NULL,
           ishape = NULL, imethod = 1,
           glocation.mux = exp((-4:4)/2), gscale.mux = exp((-4:4)/2),
           gshape = qt(ppoints(6), df = 1), probs.y = 0.3,
           zero = c("scale", "shape"))

Arguments

llocation, lscale, lshape

Parameter link function applied to the location parameter aa, positive scale parameter bb and the shape parameter qq, respectively. See Links for more choices.

ilocation, iscale

Initial value for aa and bb, respectively. The defaults mean an initial value is determined internally for each.

ishape

Initial value for qq. If failure to converge occurs, try some other value. The default means an initial value is determined internally.

imethod, zero

See CommonVGAMffArguments for information.

glocation.mux, gscale.mux, gshape, probs.y

See CommonVGAMffArguments for information.

Details

The probability density function is given by

f(y;a,b,q)=qexp(w/q2ew)/(bΓ(1/q2)),f(y;a,b,q) = |q|\,\exp(w/q^2 - e^w) / (b \, \Gamma(1/q^2)),

for shape parameter q0q \ne 0, positive scale parameter b>0b > 0, location parameter aa, and all real yy. Here, w=(ya)q/b+ψ(1/q2)w = (y-a)q/b+\psi(1/q^2) where ψ\psi is the digamma function, digamma. The mean of YY is aa (returned as the fitted values). This is a different parameterization compared to lgamma3.

Special cases: q=0q = 0 is the normal distribution with standard deviation bb, q=1q = -1 is the extreme value distribution for maximums, q=1q = 1 is the extreme value distribution for minima (Weibull). If q>0q > 0 then the distribution is left skew, else q<0q < 0 is right skew.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such as vglm, and vgam.

Warning

The special case q=0q = 0 is not handled, therefore estimates of qq too close to zero may cause numerical problems.

Note

The notation used here differs from Prentice (1974): α=a\alpha = a, σ=b\sigma = b. Fisher scoring is used.

Author(s)

T. W. Yee

References

Prentice, R. L. (1974). A log gamma model and its maximum likelihood estimation. Biometrika, 61, 539–544.

See Also

lgamma3, lgamma, gengamma.stacy.

Examples

pdata <- data.frame(x2 = runif(nn <- 1000))
pdata <- transform(pdata, loc = -1 + 2*x2, Scale = exp(1))
pdata <- transform(pdata, y = rlgamma(nn, loc = loc, scale = Scale, shape = 1))
fit <- vglm(y ~ x2, prentice74(zero = 2:3), data = pdata, trace = TRUE)
coef(fit, matrix = TRUE)  # Note the coefficients for location

[Package VGAM version 1.1-11 Index]