pospoisson {VGAM} | R Documentation |
Positive Poisson Distribution Family Function
Description
Fits a positive Poisson distribution.
Usage
pospoisson(link = "loglink", type.fitted = c("mean", "lambda",
"prob0"), expected = TRUE, ilambda = NULL, imethod = 1,
zero = NULL, gt.1 = FALSE)
Arguments
link |
Link function for the usual mean (lambda) parameter of
an ordinary Poisson distribution.
See |
expected |
Logical.
Fisher scoring is used if |
ilambda , imethod , zero |
See |
type.fitted |
See |
gt.1 |
Logical.
Enforce |
Details
The positive Poisson distribution is the ordinary Poisson
distribution but with the probability of zero being zero. Thus the
other probabilities are scaled up (i.e., divided by 1-P[Y=0]
).
The mean, \lambda / (1 - \exp(-\lambda))
,
can be obtained by the extractor function fitted
applied to
the object.
A related distribution is the zero-inflated Poisson, in which the
probability P[Y=0]
involves another parameter \phi
.
See zipoisson
.
Value
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
rrvglm
and vgam
.
Warning
Under- or over-flow may occur if the data is ill-conditioned.
Note
This family function can handle multiple responses.
Yet to be done: a quasi.pospoisson
which estimates a dispersion
parameter.
Author(s)
Thomas W. Yee
References
Coleman, J. S. and James, J. (1961). The equilibrium size distribution of freely-forming groups. Sociometry, 24, 36–45.
See Also
Gaitdpois
,
gaitdpoisson
,
posnegbinomial
,
poissonff
,
zapoisson
,
zipoisson
,
simulate.vlm
,
otpospoisson
,
Pospois
.
Examples
# Data from Coleman and James (1961)
cjdata <- data.frame(y = 1:6, freq = c(1486, 694, 195, 37, 10, 1))
fit <- vglm(y ~ 1, pospoisson, data = cjdata, weights = freq)
Coef(fit)
summary(fit)
fitted(fit)
pdata <- data.frame(x2 = runif(nn <- 1000)) # Artificial data
pdata <- transform(pdata, lambda = exp(1 - 2 * x2))
pdata <- transform(pdata, y1 = rgaitdpois(nn, lambda, truncate = 0))
with(pdata, table(y1))
fit <- vglm(y1 ~ x2, pospoisson, data = pdata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)