poissonff {VGAM} | R Documentation |
Poisson Regression
Description
Family function for a generalized linear model fitted to Poisson responses.
Usage
poissonff(link = "loglink", imu = NULL, imethod = 1,
parallel = FALSE, zero = NULL, bred = FALSE,
earg.link = FALSE, type.fitted = c("mean", "quantiles"),
percentiles = c(25, 50, 75))
Arguments
link |
Link function applied to the mean or means.
See |
parallel |
A logical or formula. Used only if the response is a matrix. |
imu , imethod |
See |
zero |
Can be an integer-valued vector specifying which linear/additive
predictors
are modelled as intercepts only. The values must be from the set
{1,2,..., |
bred , earg.link |
Details at |
type.fitted , percentiles |
Details at |
Details
M
defined above is the number of linear/additive predictors.
With overdispersed data try negbinomial
.
Value
An object of class "vglmff"
(see
vglmff-class
).
The object is used by modelling functions
such as
vglm
, vgam
,
rrvglm
, cqo
,
and cao
.
Warning
With multiple responses, assigning a known dispersion parameter for each response is not handled well yet. Currently, only a single known dispersion parameter is handled well.
Note
This function will handle a matrix response automatically.
Regardless of whether the dispersion
parameter is to be estimated or not, its
value can be seen from the output from the
summary()
of the object.
Author(s)
Thomas W. Yee
References
McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman & Hall.
See Also
Links
,
hdeff.vglm
,
negbinomial
,
genpoisson1
,
genpoisson2
,
genpoisson0
,
gaitdpoisson
,
zipoisson
,
N1poisson
,
pospoisson
,
skellam
,
mix2poisson
,
cens.poisson
,
ordpoisson
,
amlpoisson
,
inv.binomial
,
simulate.vlm
,
loglink
,
polf
,
rrvglm
,
cqo
,
cao
,
binomialff
,
poisson
,
Poisson
,
poisson.points
,
ruge
,
V1
,
V2
,
residualsvglm
,
margeff
.
Examples
poissonff()
set.seed(123)
pdata <- data.frame(x2 = rnorm(nn <- 100))
pdata <- transform(pdata, y1 = rpois(nn, exp(1 + x2)),
y2 = rpois(nn, exp(1 + x2)))
(fit1 <- vglm(cbind(y1, y2) ~ x2, poissonff, data = pdata))
(fit2 <- vglm(y1 ~ x2, poissonff(bred = TRUE), data = pdata))
coef(fit1, matrix = TRUE)
coef(fit2, matrix = TRUE)
nn <- 200
cdata <- data.frame(x2 = rnorm(nn), x3 = rnorm(nn), x4 = rnorm(nn))
cdata <- transform(cdata, lv1 = 0 + x3 - 2*x4)
cdata <- transform(cdata, lambda1 = exp(3 - 0.5 * (lv1-0)^2),
lambda2 = exp(2 - 0.5 * (lv1-1)^2),
lambda3 = exp(2 - 0.5 * ((lv1+4)/2)^2))
cdata <- transform(cdata, y1 = rpois(nn, lambda1),
y2 = rpois(nn, lambda2),
y3 = rpois(nn, lambda3))
## Not run: lvplot(p1, y = TRUE, lcol = 2:4, pch = 2:4, pcol = 2:4, rug = FALSE)