| paralogistic {VGAM} | R Documentation |
Paralogistic Distribution Family Function
Description
Maximum likelihood estimation of the 2-parameter paralogistic distribution.
Usage
paralogistic(lscale = "loglink", lshape1.a = "loglink", iscale = NULL,
ishape1.a = NULL, imethod = 1, lss = TRUE, gscale = exp(-5:5),
gshape1.a = seq(0.75, 4, by = 0.25), probs.y = c(0.25, 0.5, 0.75),
zero = "shape")
Arguments
lss |
See |
lshape1.a, lscale |
Parameter link functions applied to the
(positive) parameters |
iscale, ishape1.a, imethod, zero |
See |
gscale, gshape1.a |
See |
probs.y |
See |
Details
The 2-parameter paralogistic distribution is the 4-parameter
generalized beta II distribution with shape parameter p=1 and
a=q.
It is the 3-parameter Singh-Maddala distribution with a=q.
More details can be found in Kleiber and Kotz (2003).
The 2-parameter paralogistic has density
f(y) = a^2 y^{a-1} / [b^a \{1 + (y/b)^a\}^{1+a}]
for a > 0, b > 0, y \geq 0.
Here, b is the scale parameter scale,
and a is the shape parameter.
The mean is
E(Y) = b \, \Gamma(1 + 1/a) \, \Gamma(a - 1/a) / \Gamma(a)
provided a > 1; these are returned as the fitted values.
This family function handles multiple responses.
Value
An object of class "vglmff" (see vglmff-class).
The object is used by modelling functions such as vglm,
and vgam.
Note
See the notes in genbetaII.
Author(s)
T. W. Yee
References
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
See Also
Paralogistic,
sinmad,
genbetaII,
betaII,
dagum,
fisk,
inv.lomax,
lomax,
inv.paralogistic.
Examples
pdata <- data.frame(y = rparalogistic(n = 3000, exp(1), scale = exp(1)))
fit <- vglm(y ~ 1, paralogistic(lss = FALSE), data = pdata, trace = TRUE)
fit <- vglm(y ~ 1, paralogistic(ishape1.a = 2.3, iscale = 5),
data = pdata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)