| multilogitlink {VGAM} | R Documentation |
Multi-logit Link Function
Description
Computes the multilogit transformation, including its inverse and the first two derivatives.
Usage
multilogitlink(theta, refLevel = "(Last)", M = NULL, whitespace = FALSE,
bvalue = NULL, inverse = FALSE, deriv = 0, all.derivs = FALSE,
short = TRUE, tag = FALSE)
Arguments
theta |
Numeric or character. See below for further details. |
refLevel, M, whitespace |
See |
bvalue |
See |
all.derivs |
Logical. This is currently experimental only. |
inverse, deriv, short, tag |
Details at |
Details
The multilogitlink() link function is a generalization of the
logitlink link to M levels/classes. It forms the
basis of the multinomial logit model. It is sometimes
called the multi-logit link or the multinomial logit
link; some people use softmax too. When its inverse function
is computed it returns values which are positive and add to unity.
Value
For multilogitlink with deriv = 0,
the multilogit of theta,
i.e.,
log(theta[, j]/theta[, M+1]) when inverse = FALSE,
and if inverse = TRUE then
exp(theta[, j])/(1+rowSums(exp(theta))).
For deriv = 1, then the function returns
d eta / d theta as a function of
theta if inverse = FALSE,
else if inverse = TRUE then it returns the reciprocal.
Here, all logarithms are natural logarithms, i.e., to base e.
Note
Numerical instability may occur when theta is
close to 1 or 0 (for multilogitlink).
One way of overcoming this is to use, e.g., bvalue.
Currently care.exp() is used to avoid NAs being
returned if the probability is too close to 1.
Author(s)
Thomas W. Yee
References
McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman & Hall.
See Also
Links,
multinomial,
logitlink,
gaitdpoisson,
normal.vcm,
CommonVGAMffArguments.
Examples
pneumo <- transform(pneumo, let = log(exposure.time))
fit <- vglm(cbind(normal, mild, severe) ~ let, # For illustration only!
multinomial, trace = TRUE, data = pneumo)
fitted(fit)
predict(fit)
multilogitlink(fitted(fit))
multilogitlink(fitted(fit)) - predict(fit) # Should be all 0s
multilogitlink(predict(fit), inverse = TRUE) # rowSums() add to unity
multilogitlink(predict(fit), inverse = TRUE, refLevel = 1)
multilogitlink(predict(fit), inverse = TRUE) -
fitted(fit) # Should be all 0s
multilogitlink(fitted(fit), deriv = 1)
multilogitlink(fitted(fit), deriv = 2)