multilogitlink {VGAM} | R Documentation |
Multi-logit Link Function
Description
Computes the multilogit transformation, including its inverse and the first two derivatives.
Usage
multilogitlink(theta, refLevel = "(Last)", M = NULL, whitespace = FALSE,
bvalue = NULL, inverse = FALSE, deriv = 0, all.derivs = FALSE,
short = TRUE, tag = FALSE)
Arguments
theta |
Numeric or character. See below for further details. |
refLevel , M , whitespace |
See |
bvalue |
See |
all.derivs |
Logical. This is currently experimental only. |
inverse , deriv , short , tag |
Details at |
Details
The multilogitlink()
link function is a generalization of the
logitlink
link to M
levels/classes. It forms the
basis of the multinomial
logit model. It is sometimes
called the multi-logit link or the multinomial logit
link; some people use softmax too. When its inverse function
is computed it returns values which are positive and add to unity.
Value
For multilogitlink
with deriv = 0
,
the multilogit of theta
,
i.e.,
log(theta[, j]/theta[, M+1])
when inverse = FALSE
,
and if inverse = TRUE
then
exp(theta[, j])/(1+rowSums(exp(theta)))
.
For deriv = 1
, then the function returns
d eta
/ d theta
as a function of
theta
if inverse = FALSE
,
else if inverse = TRUE
then it returns the reciprocal.
Here, all logarithms are natural logarithms, i.e., to base e.
Note
Numerical instability may occur when theta
is
close to 1 or 0 (for multilogitlink
).
One way of overcoming this is to use, e.g., bvalue
.
Currently care.exp()
is used to avoid NA
s being
returned if the probability is too close to 1.
Author(s)
Thomas W. Yee
References
McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models, 2nd ed. London: Chapman & Hall.
See Also
Links
,
multinomial
,
logitlink
,
gaitdpoisson
,
normal.vcm
,
CommonVGAMffArguments
.
Examples
pneumo <- transform(pneumo, let = log(exposure.time))
fit <- vglm(cbind(normal, mild, severe) ~ let, # For illustration only!
multinomial, trace = TRUE, data = pneumo)
fitted(fit)
predict(fit)
multilogitlink(fitted(fit))
multilogitlink(fitted(fit)) - predict(fit) # Should be all 0s
multilogitlink(predict(fit), inverse = TRUE) # rowSums() add to unity
multilogitlink(predict(fit), inverse = TRUE, refLevel = 1)
multilogitlink(predict(fit), inverse = TRUE) -
fitted(fit) # Should be all 0s
multilogitlink(fitted(fit), deriv = 1)
multilogitlink(fitted(fit), deriv = 2)