lomax {VGAM} | R Documentation |
Lomax Distribution Family Function
Description
Maximum likelihood estimation of the 2-parameter Lomax distribution.
Usage
lomax(lscale = "loglink", lshape3.q = "loglink", iscale = NULL,
ishape3.q = NULL, imethod = 1, gscale = exp(-5:5),
gshape3.q = seq(0.75, 4, by = 0.25),
probs.y = c(0.25, 0.5, 0.75), zero = "shape")
Arguments
lscale , lshape3.q |
Parameter link function applied to the
(positive) parameters |
iscale , ishape3.q , imethod |
See |
gscale , gshape3.q , zero , probs.y |
Details
The 2-parameter Lomax distribution is the 4-parameter
generalized beta II distribution with shape parameters .
It is probably more widely known as the Pareto (II) distribution.
It is also the 3-parameter Singh-Maddala distribution
with shape parameter
, as well as the
beta distribution of the second kind with
.
More details can be found in Kleiber and Kotz (2003).
The Lomax distribution has density
for ,
,
.
Here,
is the scale parameter
scale
,
and q
is a shape parameter.
The cumulative distribution function is
The mean is
provided ; these are returned as the fitted values.
This family function handles multiple responses.
Value
An object of class "vglmff"
(see vglmff-class
).
The object is used by modelling functions such as vglm
,
and vgam
.
Note
See the notes in genbetaII
.
Author(s)
T. W. Yee
References
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
See Also
Lomax
,
genbetaII
,
betaII
,
dagum
,
sinmad
,
fisk
,
inv.lomax
,
paralogistic
,
inv.paralogistic
,
simulate.vlm
.
Examples
ldata <- data.frame(y = rlomax(n = 1000, scale = exp(1), exp(2)))
fit <- vglm(y ~ 1, lomax, data = ldata, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)
summary(fit)