| lognormal {VGAM} | R Documentation |
Lognormal Distribution
Description
Maximum likelihood estimation of the (univariate) lognormal distribution.
Usage
lognormal(lmeanlog = "identitylink", lsdlog = "loglink", zero = "sdlog")
Arguments
lmeanlog, lsdlog |
Parameter link functions applied to the mean and (positive)
|
zero |
Specifies which
linear/additive predictor is modelled as intercept-only.
For |
Details
A random variable Y has a 2-parameter lognormal distribution
if \log(Y)
is distributed N(\mu, \sigma^2).
The expected value of Y, which is
E(Y) = \exp(\mu + 0.5 \sigma^2)
and not \mu, make up the fitted values.
The variance of Y is
Var(Y) = [\exp(\sigma^2) -1] \exp(2\mu + \sigma^2).
Value
An object of class "vglmff" (see vglmff-class).
The object is used by modelling functions such as vglm,
and vgam.
Author(s)
T. W. Yee
References
Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences, Hoboken, NJ, USA: Wiley-Interscience.
See Also
Lognormal,
uninormal,
CommonVGAMffArguments,
simulate.vlm.
Examples
ldata2 <- data.frame(x2 = runif(nn <- 1000))
ldata2 <- transform(ldata2, y1 = rlnorm(nn, 1 + 2 * x2, sd = exp(-1)),
y2 = rlnorm(nn, 1, sd = exp(-1 + x2)))
fit1 <- vglm(y1 ~ x2, lognormal(zero = 2), data = ldata2, trace = TRUE)
fit2 <- vglm(y2 ~ x2, lognormal(zero = 1), data = ldata2, trace = TRUE)
coef(fit1, matrix = TRUE)
coef(fit2, matrix = TRUE)