| hzeta {VGAM} | R Documentation |
Haight's Zeta Family Function
Description
Estimating the parameter of Haight's zeta distribution
Usage
hzeta(lshape = "logloglink", ishape = NULL, nsimEIM = 100)
Arguments
lshape |
Parameter link function for the parameter,
called |
ishape, nsimEIM |
See |
Details
The probability function is
f(y) = (2y-1)^{(-\alpha)} - (2y+1)^{(-\alpha)},
where the parameter \alpha>0
and y=1,2,\ldots.
The function dhzeta computes this probability function.
The mean of Y, which is returned as fitted values, is
(1-2^{-\alpha}) \zeta(\alpha)
provided \alpha > 1, where \zeta is
Riemann's zeta function.
The mean is a decreasing function of \alpha.
The mean is infinite if \alpha \leq 1, and
the variance is infinite if \alpha \leq 2.
Value
An object of class "vglmff" (see vglmff-class).
The object is used by modelling functions such as vglm
and vgam.
Author(s)
T. W. Yee
References
Johnson N. L., Kemp, A. W. and Kotz S. (2005). Univariate Discrete Distributions, 3rd edition, pp.533–4. Hoboken, New Jersey: Wiley.
See Also
Hzeta,
zeta,
zetaff,
loglog,
simulate.vlm.
Examples
shape <- exp(exp(-0.1)) # The parameter
hdata <- data.frame(y = rhzeta(n = 1000, shape))
fit <- vglm(y ~ 1, hzeta, data = hdata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit) # Useful for intercept-only models; should be same as shape
c(with(hdata, mean(y)), head(fitted(fit), 1))
summary(fit)