double.cens.normal {VGAM} | R Documentation |
Univariate Normal Distribution with Double Censoring
Description
Maximum likelihood estimation of the two parameters of a univariate normal distribution when there is double censoring.
Usage
double.cens.normal(r1 = 0, r2 = 0, lmu = "identitylink", lsd =
"loglink", imu = NULL, isd = NULL, zero = "sd")
Arguments
r1 , r2 |
Integers. Number of smallest and largest values censored, respectively. |
lmu , lsd |
Parameter link functions applied to the
mean and standard deviation.
See |
imu , isd , zero |
See |
Details
This family function uses the Fisher information matrix given
in Harter and Moore (1966). The matrix is not diagonal if
either r1
or r2
are positive.
By default, the mean is the first linear/additive predictor and the log of the standard deviation is the second linear/additive predictor.
Value
An object of class "vglmff"
(see
vglmff-class
). The object is used by modelling
functions such as vglm
, and vgam
.
Note
This family function only handles a vector or one-column matrix
response. The weights
argument, if used, are interpreted
as frequencies, therefore it must be a vector with positive
integer values.
With no censoring at all (the default), it is better (and
equivalent) to use uninormal
.
Author(s)
T. W. Yee
References
Harter, H. L. and Moore, A. H. (1966). Iterative maximum-likelihood estimation of the parameters of normal populations from singly and doubly censored samples. Biometrika, 53, 205–213.
See Also
uninormal
,
cens.normal
,
tobit
.
Examples
## Not run: # Repeat the simulations of Harter & Moore (1966)
SIMS <- 100 # Number of simulations (change this to 1000)
mu.save <- sd.save <- rep(NA, len = SIMS)
r1 <- 0; r2 <- 4; nn <- 20
for (sim in 1:SIMS) {
y <- sort(rnorm(nn))
y <- y[(1+r1):(nn-r2)] # Delete r1 smallest and r2 largest
fit <- vglm(y ~ 1, double.cens.normal(r1 = r1, r2 = r2))
mu.save[sim] <- predict(fit)[1, 1]
sd.save[sim] <- exp(predict(fit)[1, 2]) # Assumes a log link & ~ 1
}
c(mean(mu.save), mean(sd.save)) # Should be c(0,1)
c(sd(mu.save), sd(sd.save))
## End(Not run)
# Data from Sarhan & Greenberg (1962); MLEs are mu=9.2606, sd=1.3754
strontium90 <- data.frame(y = c(8.2, 8.4, 9.1, 9.8, 9.9))
fit <- vglm(y ~ 1, double.cens.normal(r1 = 2, r2 = 3, isd = 6),
data = strontium90, trace = TRUE)
coef(fit, matrix = TRUE)
Coef(fit)